Quarterly Ambient Air Quality Monitoring Report for the Durham York Energy Centre – October to December 2016

Durham York Energy Centre

Prepared for: The Regional Municipality of Durham 605 Rossland Rd Whitby, ON L1N 6A3

Prepared by: Stantec Consulting Ltd. 300W-675 Cochrane Dr., Markham, ON L3R 0B8

Project No.: 160950528

February 9, 2017

Sign-off Sheet

This document entitled Quarterly Ambient Air Quality Monitoring Report for the Durham York Energy Centre – October to December 2016 was prepared by Stantec Consulting Ltd. for the account of The Regional Municipality of Durham. The material in it reflects Stantec's best judgment considering the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. Stantec Consulting Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Timothy Hung, B.A.Sc.

Reviewed by (signature)

Gregory Crooks M.Eng., P.Eng.

Reviewed by ___

(signature)

Kimberly Ireland, P.Eng.

Table of Contents

Exec	utive Summary	iv
Abbr	reviations	vii
1.0	Introduction	
1.1	BACKGROUND AND OBJECTIVES	
1.2	LOCATIONS OF AMBIENT AIR QUALITY MONITORING STATIONS	1.2
2.0	Key Components Assessed	2.1
2.1	METEOROLOGY	
2.2	AIR QUALITY CONTAMINANTS OF CONCERN	
2.3	AIR QUALITY CRITERIA	2.3
3.0	Instrumentation Summary and Field Conditions	3.1
3.1	INSTRUMENTATION	
3.2	INSTRUMENTATION ISSUES	
3.3	INSTRUMENTATION RECOVERY RATES	
3.4	CONTINUOUS MONITOR INTERNAL CALIBRATIONS	
3.5	FIELD CONDITION OBSERVATIONS	3.8
4.0	Summary of Ambient Measurements	4.1
4.1	METEOROLOGICAL DATA	
4.2	CAC AMBIENT AIR QUALITY MEASUREMENTS	
	4.2.1 Sulphur Dioxide (SO ₂)	
	4.2.2 Nitrogen Dioxide (NO ₂)	
	4.2.3 Nitrogen Oxides (NO _x)	
4.3	4.2.4 Particulate Matter Smaller than 2.5 Microns (PM _{2.5})	
4.3 4.4	AMBIENT PAH CONCENTRATIONS	
4.4 4.5	AMBIENT DIOXINS AND FURANS CONCENTRATIONS	
5.0	Conclusions	<i>E</i> 1
6.0	References	6.1

LIST OF TABLES

Table 2-1	Summary of Meteorological Parameters Measured at Each Station	2.1
Table 2-2	Summary of Air Quality Criteria for CACs	2.3
Table 2-3	Summary of Air Quality Criteria for Metals	
Table 2-4	Summary of Air Quality Criteria for PAHs and D/Fs	
Table 3-1	Summary of Continuous Ambient Air Quality Monitors	3.1
Table 3-2	Summary of Non-Continuous Ambient Air Quality Monitors	3.2
Table 3-3	Summary of Meteorological Equipment	3.3
Table 3-4	Summary of Instrument Issues at the Courtice WPCP Station	
	(Predominately Upwind)	3.4
Table 3-5	Summary of Instrument Issues at the Rundle Road Station	
	(Predominately Downwind)	3.5
Table 3-6	Summary of Instrument Issues at Fence Line Station	3.6
Table 3-7	Summary of Data Recovery Rates for the Courtice WPCP Station	
	(Predominately Upwind) - October to December 2016	3.6
Table 3-8	Summary of Data Recovery Rates for the Rundle Road Station	
	(Predominately Downwind) - October to December 2016	3.6
Table 3-9	Summary of Data Recovery Rates for the Fence Line Station –	
	October to December 2016	3.7
Table 4-1	Summary of Hourly Meteorological Measurements - October to	
	December 2016	4.1
Table 4-2	Summary of Ambient CAC Monitoring Data – October to	
	December 2016	4.4
Table 4-3	Summary of Measured Ambient TSP/Metals Concentrations	
Table 4-4	Summary of Measured Ambient PAH Concentrations	4.20
Table 4-5	Source Contribution Analysis - Quarter 4 2016 B(a)P Exceedances	4.22
Table 4-6	Summary of Measured Ambient Dioxins and Furans Concentrations	4.24
LIST OF FIGU	JRES	
Figure 1-1	Durham York Energy Centre Site Location Plan	1.4
Figure 1-2	Locations of Ambient Air Quality Monitoring Stations	
Figure 1-3	View of the Rundle Road Ambient Air Quality Monitoring Station	1.6
Figure 1-4	View of the Courtice WPCP Ambient Air Quality Monitoring Station	1.6
Figure 1-5	View of the Fence Line Ambient Air Quality Monitoring Station	
Figure 3-1	View of South Service Road Realignment Construction (Looking	
	South from the Existing South Service Road)	3.9
Figure 3-2	View from Baseline Road (between Solina Road and Courtice	
	Road) Looking Northwest at Highway 418 Construction Activities	3.9
Figure 4-1	Wind Roses for October to December 2016	
Figure 4-2	Comparison of NO ₂ / NO _X and SO ₂ Ambient Air Quality Monitoring	
_	Data to Applicable Criteria	4.8
Figure 4-3	Pollution Roses of Measured Hourly Average SO ₂ Concentrations –	
	October to December 2016	4.10
Figure 4-4	Pollution Roses of Measured Hourly Average NO ₂ Concentrations –	
	October to December 2016	4.13

Figure 4-5	Pollution Roses of Measured Hourly Average NO _X Concentrations – October to December 2016	4 15
Figure 4-6	Pollution Roses of Measured 24-Hour Average PM _{2.5} Concentrations – October to December 2016	
LIST OF APPEI	NDICES	
APPENDIX A	SO ₂ AND NO _X INSTRUMENT DAILY INTERNAL ZERO CALIBRATION SUMMARIES	A.1
APPENDIX B	SO ₂ DATA SUMMARIES AND TIME HISTORY PLOTS	В.1
APPENDIX C	NO ₂ DATA SUMMARIES AND TIME HISTORY PLOTS	C.1
APPENDIX D	NO _X DATA SUMMARIES AND TIME HISTORY PLOTS	D.1
APPENDIX E	PM _{2.5} DATA SUMMARIES AND TIME HISTORY PLOTS	E.1
APPENDIX F	CONTINUOUS PARAMETER EDIT LOGS	F.1
APPENDIX G	METALS DATA SUMMARY	G.1
APPENDIX H	PAHS DATA SUMMARY	H.1
APPENDIX I	DIOXINS AND FURANS DATA SUMMARY	I.1

Executive Summary

The Regional Municipalities of Durham and York constructed the Durham York Energy Centre (DYEC) which is an Energy-from-Waste (EFW) Facility intended to provide a long-term, sustainable solution to manage municipal solid waste remaining after diversion from the Regions. The facility commenced commercial operation on February 1, 2016.

The Ambient Air Quality Monitoring Plan - Durham York Residual Waste Study (Stantec, 2012), was developed based on the Regional Council's mandate to provide ambient air quality monitoring in the area of the DYEC for a three-year period. An ambient air quality monitoring and reporting program was also a requirement laid out in the Provincial Minister's Notice of Approval to Proceed with the Undertaking, detailed in Condition 11 of the Notice of Approval (MOECC, 2010). The air monitoring plan was also developed to satisfy the conditions of the Environmental Compliance Approval and the environmental mitigation and commitments set out in the Environmental Assessment (Jacques Whitford, 2009). The predominantly downwind station is located along Rundle Road, south of Baseline Road. The predominantly upwind station is sited at the Courtice Water Pollution Control Plant (WPCP). Since May 2013, measurements of the following air contaminants have been made at the two stations:

- Continuously monitored
 - Sulphur Dioxide (SO₂)
 - Nitrogen Oxides (NO_X), and
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Non-continuously monitored
 - Metals in Total Suspended Particulate (TSP) matter
 - Polycyclic Aromatic Hydrocarbons (PAHs), and
 - Dioxins and Furans.

Operation of the non-continuous monitors was temporarily discontinued from June 28, 2014 (after completion of the background air quality data collection period) onwards through the rest of construction and commissioning, as per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012).

A third Fence Line Station, which measures non-continuous parameters (metals and total particulate matter), was installed prior to full operation of the DYEC. As per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012), the Fence Line station, which collects non-continuous parameters began operation after the Facility's commissioning period was completed, and will run for a one-year period.

The EFW facility became fully operational on February 1, 2016, and monitoring of non-continuous air quality parameters resumed.

Meteorological data is also measured at the Courtice WPCP and Rundle Road stations. The predominantly downwind Rundle Road station measures horizontal wind speed, wind direction, atmospheric temperature, relative humidity, and rainfall. The predominantly upwind Courtice WPCP Station measures atmospheric temperature, relative humidity, rainfall, and barometric pressure. Wind speed and wind direction data at the predominantly upwind location are measured and provided by the Courtice Water Pollution Control Plant.

This quarterly report provides a summary of the ambient air quality data collected at the three stations for the period October to December (Calendar Quarter 4). Some operational issues at the sites were encountered this quarter including: an SO₂ monitor span calibration issue at the Rundle Road Station and power outages at the Courtice WPCP and Rundle Road Stations. Data recovery rates for all measured air quality parameters for this quarter were acceptable. Additional details on instrumentation issues are presented in Section 3.2 of this report.

The Regional Municipality of Durham requested that the dioxin/ furan sampling frequency at the Courtice WPCP and Rundle Road monitoring stations be increased from once every 24 days to once every 12 days for a 3-month period starting on September 9, 2016 and ending on November 20, 2016. The additional sampling followed the same methodologies and protocols specified in the Ambient Monitoring Plan (Stantec, 2012) for the existing monitoring program. The results of this additional sampling have been included in this report.

Site personnel noted ongoing Highway 418 construction on the north and south sides of Highway 401 between Courtice and Crago Roads causing significant dust suspension from haul trucks, bulldozers, graders, and excavators. These construction activities may have contributed to elevated PM_{2.5} measurements during this quarter.

The following observations and conclusions were made from a review of the measured ambient air quality monitoring data:

- Measured concentrations of NO₂, SO₂, and PM_{2.5} were below the applicable O. Reg. 419/05 Standards or human health risk assessment (HHRA) health-based criteria presented in Table 2-2 of this report.
- 2. Since the Canadian Ambient Air Quality Standard (CAAQS) for PM_{2.5} is based on a 98th percentile level over 3 years, whereas the PM_{2.5} measurement period at both stations for this quarterly report was three months, there is insufficient data collected to determine with any certainty if exceedances of the CAAQS would occur. Therefore, no comparison of the measured PM_{2.5} data during this quarter to the CAAQS was conducted for this report, as it would not be scientifically accurate or representative.
- 3. The maximum measured concentrations of TSP and all metals with Ministry of Environment and Climate Change (MOECC) air quality Standards, were well below their applicable Standards (as presented in **Table 2-3** in this report).

- 4. The maximum measured concentrations of all PAHs with MOECC air quality Standards were well below their applicable criteria shown in **Table 2-4**, with the exception of the 24-hour benzo(a)pyrene (B(a)P) concentration in two samples measured at the Courtice and Rundle Road Stations which exceeded the applicable Ontario Ambient Air Quality Criteria (AAQC) by 107% and 250%, respectively. The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this AAQC are commonly measured throughout Ontario. The measurements were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health based criterion.
- 5. The maximum measured toxic equivalent dioxin and furan concentration was below the applicable Standard presented in **Table 2-4**

In summary, the measured concentrations of the air contaminants monitored were below their applicable MOECC Standards during the monitoring period between October to December 2016, with the exception of benzo(a)pyrene. Furthermore, all measured levels of the monitored contaminants were below their applicable HHRA health-based criteria.

Abbreviations

AAQC Ambient Air Quality Criteria

CAAQS Canadian Ambient Air Quality Standards

CAC Criteria Air Contaminants

CDD Chlorinated Dibenzo-p-dioxins
CDF Chlorinated Dibenzo-p-furans

D/Fs Dioxins and Furans

DYEC Durham York Energy Centre

EFW Energy from Waste

MOECC Ontario Ministry of the Environment and Climate Change

SO₂ Sulphur Dioxide
NOx Nitrogen Oxides

PAH Polycyclic Aromatic Hydrocarbons

Particulate A particle of a solid or liquid that is suspended in air.

PCB Polychlorinated biphenyl

PCDD/PCDF Polychlorinated dibenzo-p-dioxins and dibenzofurans

PM Particulate Matter

PM_{2.5} Particulate Matter smaller than 2.5 microns

TEQ Toxic Equivalent Quotient

TEQs Toxic Equivalents

TSP Total Suspended Particulate
WPCP Water Pollution Control Plant

Elements Cd Cadmium Hg Mercury Pb Lead

Al Aluminum
As Arsenic
Be Beryllium
Cr Chromium
Cu Copper
Mn Manganese

Ni Nickel
Ag Silver
TI Thallium
Sn Tin

V Vanadium

Zn Zinc

Miscellaneous

°C Temperature in degrees Celsius

N/A Not Available

% Percent

ppm Parts per million
ppb Parts per billion

ppbv Parts per billion by volume

ppt Parts per trillion

min Minimum
max Maximum
mm Millimetre
m Metre

km/hr Kilometres per hour

mg/m³ Milligrams per cubic metre

µg/m³ Microgram per cubic metre

ng/m³ Nanograms per cubic metre

pg/m³ Picograms per cubic metre

pg TEQ/m³ Picograms of toxic exposure equivalents per cubic metre

Introduction February 9, 2017

1.0 INTRODUCTION

1.1 BACKGROUND AND OBJECTIVES

The Regional Municipalities of Durham and York constructed the Durham York Energy Centre (DYEC) which is an Energy-from-Waste (EFW) Facility intended to provide a long-term, sustainable solution to manage municipal solid waste remaining after diversion from the Regions. The site location of the DYEC is shown in **Figure 1-1.** The facility commenced commercial operation on February 1, 2016.

An Ambient Air Quality Monitoring Plan – Durham York Residual Waste Study (Ambient Monitoring Plan) was developed and included two monitoring stations referred to as the Courtice Water Pollution Control Plant (WPCP) Station and the Rundle Road Station (as well as a temporary Fence Line Station). The plan developed for these stations was based on the Regional Council's mandate to provide ambient air quality monitoring in the area of the DYEC for a three-year period.

The purposes of the ambient air quality monitoring program are to:

- Quantify any measurable ground level concentrations resulting from emissions from the DYEC cumulative to local air quality, including validating the predicted concentrations from the dispersion modelling conducted in the Environmental Assessment (Jacques Whitford, 2009);
- 2. Monitor concentration levels of EFW-related air contaminants in nearby residential areas; and
- 3. Quantify background ambient levels of air contaminants in the area.

Two monitoring stations (Courtice WPCP and Rundle Road Stations) in the vicinity of the DYEC were set up in April 2013. Since May 2013, the two stations have measured the following air contaminants:

- Continuously monitored criteria air contaminants (CACs)
 - Sulphur Dioxide (SO₂)
 - Nitrogen Oxides (NOx), and
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Non-continuously monitored
 - Metals in Total Suspended Particulate (TSP) matter
 - Polycyclic Aromatic Hydrocarbons (PAHs), and
 - Dioxins and Furans.

Introduction February 9, 2017

Operation of the non-continuous monitors was temporarily discontinued from June 28, 2014 (after completion of the background air quality data collection period) onwards through the rest of construction and commissioning, as per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012). The EFW facility became fully operational starting February 1, 2016, and non-continuous monitoring resumed (as specified in the Ambient Monitoring Plan).

A third Fence Line Station, which measures non-continuous parameters (metals and total particulate matter), was installed prior to full operation of the DYEC. The Fence Line Station began operation after the Facility's commissioning period was completed, and will run for a one-year period.

At the request of the Regional Municipality of Durham, the dioxin/ furan sampling frequency at the Courtice WPCP and Rundle Road Stations was increased to once every 12 days from once every 24 days between September 9 and November 20, 2016. The additional sampling followed the same methodologies and protocols specified in the Ambient Monitoring Plan (Stantec, 2012) for the existing monitoring program. The results of this additional sampling have been included in this report.

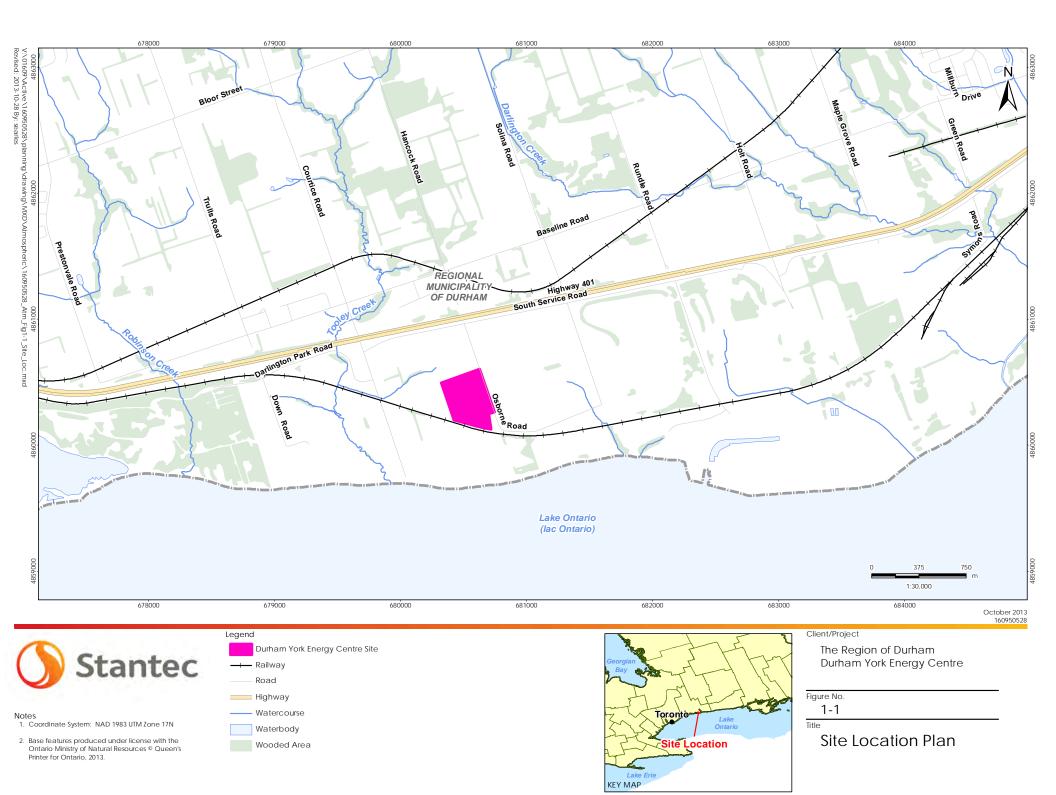
This quarterly report provides a summary of the ambient air quality data collected at the three stations for the period October to December 2016 (Q4).

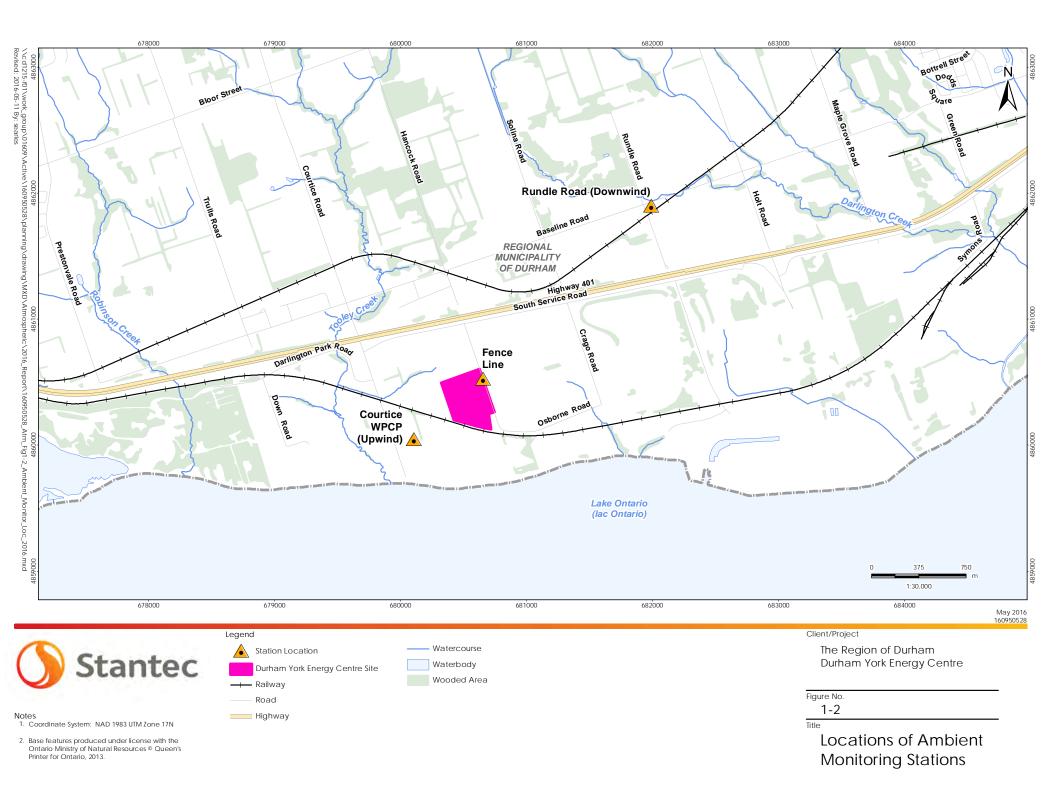
1.2 LOCATIONS OF AMBIENT AIR QUALITY MONITORING STATIONS

The selection of sites for the monitoring stations was accomplished in consultation with the Ontario Ministry of Environment and Climate Change (MOECC) and Regional Municipality of Durham and York representatives based on the results of air quality modelling done in support of the environmental assessment for the project, the locations of nearby sensitive receptors, and general MOECC siting criteria. Two monitoring stations (one predominantly downwind and one predominantly upwind) were chosen for the ambient air quality program. The final locations of the monitoring stations were influenced by the availability of electrical power, accessibility of each location and security. Details of the siting requirements are provided in the Ambient Monitoring Plan.

The Rundle Road Station is sited northeast of the DYEC in the vicinity of residential receptors predominantly downwind of the DYEC, and within the area where maximum annual concentrations are predicted to occur. This predominantly downwind station is located along Rundle Road, south of Baseline Road. Its location is shown in **Figure 1-2** and **Figure 1-3**. The monitoring station measures all the air contaminants listed in Section1.1 and meteorological data.

Introduction February 9, 2017


The predominately upwind Courtice WPCP Station is located at the Courtice Water Pollution Control Plant (WPCP) to the southwest of the DYEC with the objective of measuring background air quality in a predominantly upwind location. The location is presented in Figure 1-2 and Figure 1-4. This monitoring station measures the air contaminants presented in Section 1.1, as well as meteorological data, with the exception of wind speed and wind direction, which are measured and provided by the Courtice Water Pollution Control Plant.


A third Fence Line Station, which measures non-continuous parameters (metals and total particulate matter), was installed prior to full operation of the DYEC. As per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012), the Fence Line Station, which collects non-continuous parameters began operation after the Facility's commissioning period was completed, and will run for a one-year period. The location is presented in Figure 1-2 and Figure 1-5.

1.3

Introduction February 9, 2017

Figure 1-3 View of the Rundle Road Ambient Air Quality Monitoring Station

Figure 1-4 View of the Courtice WPCP Ambient Air Quality Monitoring Station

Introduction February 9, 2017

Figure 1-5 View of the Fence Line Ambient Air Quality Monitoring Station

Key Components Assessed February 9, 2017

2.0 KEY COMPONENTS ASSESSED

2.1 METEOROLOGY

The following meteorological parameters are measured at the Rundle Road and Courtice WPCP Stations.

Table 2-1 Summary of Meteorological Parameters Measured at Each Station

Courtice WPCP (Predominately Upwind) Ambient Air Quality Monitoring Station	Rundle Road (Predominately Downwind) Ambient Air Quality Monitoring Station
Wind Speed and Direction @ 20 m	Wind Speed and Direction @10 m
Ambient Temperature @ 2 m	Ambient Temperature @ 2 m
Relative Humidity	Relative Humidity
Rainfall	Rainfall
Barometric Pressure	

2.2 AIR QUALITY CONTAMINANTS OF CONCERN

The ambient air quality monitoring program for the DYEC includes the following contaminants specified in the Ambient Monitoring Plan (Stantec, 2012):

- Continuously monitored criteria air contaminants (CACs)
 - Sulphur Dioxide (SO₂)
 - Nitrogen Oxides (NOx), and
 - Particulate Matter smaller than 2.5 microns (PM_{2.5}).
- Non-continuously monitored
 - Metals in Total Suspended Particulate (TSP) matter
 - Polycyclic Aromatic Hydrocarbons (PAHs), and
 - Dioxins and Furans.

Operation of the non-continuous monitors was temporarily discontinued between June 28, 2014 and January 31, 2016 as per Section 1.2 of the Ambient Monitoring Plan (Stantec, 2012). The EFW facility started full commercial operation on February 1, 2016, and monitoring of non-continuous monitors resumed, as specified in the Ambient Monitoring Plan (Stantec, 2012).

The following are lists of the specific metals, PAHs, and dioxins and furans being measured. Rationales for the choice of contaminants being monitored are provided in the Ambient Monitoring Plan (Stantec, 2012).

Key Components Assessed February 9, 2017

Metals:

- Aluminum (Al)
- Antimony (Sb)
- Arsenic (As)
- Barium (Ba)
- Beryllium (Be)
- Bismuth (Bi)
- Boron (B)
- Cadmium (Cd)
- Cobalt (Co)
- Copper (Cu)
- Chromium (Cr) (Total)

- Iron (Fe)
- Lead (Pb)
- Magnesium (Mg)
- Manganese (Mn)
- Mercury (Hg)
- Molybdenum (Mo)
- Nickel (Ni)
- Phosphorus (Ph)
- Selenium (Se)
- Silver (Ag)
- Strontium (Sr)

- Thallium (TI)
- Tin (Sn)
- Titanium (Ti)
- Uranium (U)
- Vanadium (V)
- Zinc (Zn)
- Zirconium (Zr)

Polycyclic Aromatic Hydrocarbons:

- 1-Methylnaphthalene
- 2-Methylnaphthalene
- Acenaphthene
- Acenaphthylene
- Anthracene
- Benzo(a)anthracene
- Benzo(a)fluorene
- Benzo(a)pyrene
- Benzo(b)fluorene

- Benzo(b)fluoranthene
- Benzo(e)pyrene
- Benzo(g,h,i)perylene
- Benzo(k)fluoranthene
- Biphenol
- Chrysene
- Dibenz(a,h)anthracene
- Dibenz(a,c)anthracene
- Fluoranthene

- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Perylene
- Phenanthrene
- Pyrene
- Tetralin
- o-Terphenyl
- Total PAHs

Dioxins and Furans:

- 2,3,7,8-Tetra CDD
- 1.2.3.7.8-Penta CDD
- 1,2,3,4,7,8-Hexa CDD
- 1,2,3,6,7,8-Hexa CDD
- 1,2,3,7,8,9-Hexa CDD
- 1,2,3,4,6,7,8-Hepta CDD
- Octa CDD
- Total Tetra CDD
- Total Penta CDD
- Total Hexa CDD

- Total Hepta CDD
- 2,3,7,8-Tetra CDF
- 1,2,3,7,8-Penta CDF
- 2,3,4,7,8-Penta CDF
- 1,2,3,4,7,8-Hexa CDF
- 1,2,3,6,7,8-Hexa CDF
- 224/7011---- 001
- 2,3,4,6,7,8-Hexa CDF
- 1,2,3,7,8,9-Hexa CDF
- 1,2,3,4,6,7,8-Hepta CDF
- 1,2,3,4,7,8,9-Hepta CDF

- Octa CDF
- Total Tetra CDF
- Total Penta CDF
- Total Hexa CDF
- Total Hepta CDF
- Total toxic equivalency (I-TEQ)

Key Components Assessed February 9, 2017

2.3 AIR QUALITY CRITERIA

Two sets of criteria were used for comparison to the air quality data as specified in the Ambient Air Monitoring Plan (Stantec, 2012). The first set of criteria was the Standards reported in O. Reg. 419/05 (Schedules 3 and 6). These are compliance based Standards used throughout the province of Ontario. However, not all chemicals have O. Reg. 419/05 Standards, or in some instances updated health-based criteria were used in the human health risk assessment (HHRA) conducted in support of the Environmental Assessment (July 31, 2009 - December 10, 2009). These health-based values, which were reported in Table 7-2 (Summary of Inhalation TRVs and Inhalation Benchmarks Selected for CACs) and Table 7-3 (Inhalation TRVs and Inhalation Benchmarks for Selected COPCs) of the HHRA (Stantec, 2009) were used as the second set of criteria.

The previously applicable 24-hour Canada-Wide Standard (CWS) for PM $_{2.5}$ of 30 µg/m 3 (98th percentile averaged over 3 consecutive years) has been superseded by the new Canadian Ambient Air Quality Standard (CAAQS) of 28 µg/m 3 (98th percentile averaged over 3 consecutive years) and the annual objective of 10 µg/m 3 as noted in **Table 2-2**. The proposed CAAQS 24-hour objective for 2020 is 27 µg/m 3 .

Summaries of the relevant air quality criteria for the contaminants monitored in Q4 2016 are presented in **Table 2-2** to **Table 2-4**.

Table 2-2 Summary of Air Quality Criteria for CACs

Contouringui	CAS	O. Reg. 419/05 – Schedule 3 Standards /AAQC			HHRA H	ealth-Based	Criteria
Contaminant	CAS	1-Hour (µg/m³)	24-Hour (µg/m³)	Annual (µg/m³)	1-Hour (µg/m³)	24-Hour (µg/m³)	Annual (µg/m³)
Sulphur dioxide	7446095	690	275	-	690	275	29
Nitrogen oxides ^A	10102-44-0	400	200	-	400	200	60
		Canadian Ambient Air Quality Standards (CAAQS)			HHRA H	ealth-Based	Criteria
Contaminant	CAS	1-Hour (µg/m³)	24-Hour (μg/m³)	Annual (µg/m³)	1-Hour (µg/m³)	24-Hour (µg/m³)	Other time Period (µg/m³)
PM _{2.5}	N/A	-	28 ^B	10 ^C	-	30 D	-

Notes:

- A. The Schedule 3 Standards for NO_X are based on health effects of NO₂, as NO₂ has adverse health effects at much lower concentrations than NO. Therefore, the standard was compared to NO₂ in this report. However, as per the current April 2012 version of O. Reg. 419/05 Summary of Standards and Guidelines, the standard was also compared to the monitored NO_X.
- B. Canadian Ambient Air Quality Standards (CAAQS) for Respirable Particulate Matter and Ozone, effective by 2015 (CCME, 2012). The Respirable Particulate Matter Objective is referenced to the 98th percentile daily average concentration averaged over 3 consecutive years.
- C. Annual Canadian Ambient Air Quality Standard for Respirable Particulate Matter, effective by 2015. The Respirable Particulate Matter Objective is referenced to the 3-year average of the annual average concentrations.
- D. HHRA Health-Based criterion for PM_{2.5} was selected referencing CCME (2006).

Stantec

Key Components Assessed February 9, 2017

Table 2-3 Summary of Air Quality Criteria for Metals

	O. Reg. 419/05 – Schedule 3 Standards					ealth-Based	d Criteria
Contaminant	CAS	1-Hour (µg/m³)	24-Hoυr (μg/m³)	Other time Period (µg/m³)	1-Hour (μg/m³)	24-Hour (μg/m³)	Annual (µg/m³)
Total Particulate	NA	-	120	-	-	120	60
Aluminum	7429-90-5	-	4.8	-	-	-	-
Antimony	7440-36-0	-	25	-	5	25	0.2
Arsenic	7440-38-2	-	0.3	-	0.2	0.3	0.015 A 0.0043 B
Barium	7440-39-3	-	10	-	5	10	1
Beryllium	7440-41-7	-	0.01	-	0.02	0.01	0.007 A 0.0024 B
Bismuth	7440-69-9			-			
Boron	7440-42-8	-	120	-	50	-	5
Cadmium	7440-43-9	-	0.025	0.005; annual	0.1	0.025	0.005 A 0.0098 B
Chromium (Total)	7440-47-3	-	0.5	-	1	-	60
Cobalt	7440-48-4	-	0.1	-	0.2	0.1	0.1
Copper	8440-50-8	-	50	-	-	-	-
Iron	15438-31-0	-	4	-	-	-	-
Lead	7439-92-1	-	0.5	0.2; 30-day	1.5	0.5	0.5
Magnesium	7439-95-4			-			
Manganese	7439-96-5	-	0.4	-	-	-	-
Mercury	7439-97-6	-	2	-	0.6	2	0.3
Molybdenum	7439-87-7	-	120	-	-	-	-
Nickel	7440-02-0	-	0.2	0.04; annual	6	-	0.05
Phosphorus	7723-14-0	-	-	-	-	-	6.4 x 10 ⁷
Selenium	7782-49-2	-	10	-	2	10	0.2
Silver	7440-22-4	-	1	-	0.1	1	0.01
Strontium	7440-24-6	-	120	-	-	-	-
Thallium	7440-28-0	-	-	-	1	-	0.1
Tin	7440-31-5	-	10	-	20	10	2

Key Components Assessed February 9, 2017

Table 2-3 Summary of Air Quality Criteria for Metals

			. Reg. 419/05 edule 3 Stand		HHRA H	ealth-Based	l Criteria
Contaminant	CAS	1-Hour (µg/m³)	24-Hour (µg/m³)	Other time Period (µg/m³)	1-Hour (µg/m³)	24-Hour (μg/m³)	Annual (µg/m³)
Titanium	7440-32-6	-	120	-	-	-	-
Vanadium	7440-62-2	-	2	-	0.5	1	1
Uranium	7440-61-1	-	1.5	0.03; annual	-	-	-
Zinc	7440-66-6	-	120	-	50	-	5
Zirconium	7440-67-7	-	20	-	-	-	-

Notes:

- A. Annual Average
- B. Carcinogenic Annual Average

Table 2-4 Summary of Air Quality Criteria for PAHs and D/Fs

		O. Reg. 419/05 – Schedule 3 Standards						
Contaminant	CAS	1-Hour (ng/m³)	24-Hour (ng/m³)	Other time Period (ng/m³)	1-Hour (ng/m³)	24-Hour (ng/m³)	Annual (ng/m³)	Toxic Equivalency Factor Annual ^{A, G} (ng/m³)-1
1-Methylnaphthalene	90-12-0	-	12,000	-	-	-	3,000	-
2-Methylnaphthalene	91-57-6	-	10,000	-	-	-	3,000	-
Acenaphthene	83-32-9	-	-	-	1,000	-	-	1
Acenaphthylene	208-96-8	-	3,500	-	1,000	-	-	10
Anthracene	120-12-7	-	200	-	500	-	50	-
Benzo(a)anthracene	56-55-3	-	-	-	500	-	-	100
Benzo(b)fluoranthene	205-99-2	-	-	-	500	-	-	100

Stantec

Key Components Assessed February 9, 2017

Table 2-4 Summary of Air Quality Criteria for PAHs and D/Fs

		O. Reg. 419/05 – Schedule 3 Standards			HHRA Health-Based Criteria			
Contaminant	CAS	1-Hour (ng/m³)	24-Hour (ng/m³)	Other time Period (ng/m³)	1-Hour (ng/m³)	24-Hour (ng/m³)	Annual (ng/m³)	Toxic Equivalency Factor Annual ^{A, G} (ng/m³)-1
Benzo(k)fluoranthene	207 -08-9	-	-	-	500	-	-	100
Benzo(a)fluorene	238-84-6	-	-	-	500	-	50	-
Benzo(b)fluorene	243-17-4	-	-	-	500	-	50	-
Benzo (g,h,i) perylene	191-24-2	-	-	-	500	-	-	100
Benzo(a)pyrene	50-32-8	-	0.05 ^B 5 ^C 1.1 ^D	0.01; annual	-	1	87 ^A	-
Benzo(e)pyrene	192-97-2	-	-	-	500	-	-	10
Biphenyl	92-52-4	-	-	-	-	-	224,000	-
Chrysene	218-01-9				-			-
Dibenzo(a,c)anthracene	215-58-7	-	-	-	-	-	-	100
Dibenzo(a,h)anthracene	53-70-3	-	-	-	500	-	-	1,000
Fluoranthene	206-44-0	-	-	-	500	-	-	1
Indeno(1,2,3-cd)pyrene	193-39-5	-	-	-	500	-	-	100
Naphthalene	91-20-3	-	22,500	-	-	22,500	3,000	-
o-Terphenyl	84-15-1	-	-	-	50,000	-	5,000	-
Perylene	198-55-0	-	-	-	500	-	-	1
Phenanthrene	85-01-8	-	-	-	500	-	-	1
Pyrene	129-00-0	-	-	-	500	-	-	1

Key Components Assessed February 9, 2017

Table 2-4 Summary of Air Quality Criteria for PAHs and D/Fs

		O. Reg. 419/05 – S Standard			hedule 3 HHRA Health-Based Criter			Criteria
Contaminant	CAS	1-Hour (ng/m³)	24-Hour (ng/m³)	Other time Period (ng/m³)		24-Hour (ng/m³)	Annual (ng/m³)	Toxic Equivalency Factor Annual ^{A, G} (ng/m³) ⁻¹
Tetralin	119-64-2				-			-
Dioxins and Furans Total Toxic Equivalency ^E	NA	-	0.1 (pg TEQ/m³) F 1 (pg TEQ/m³) C	-	-	-	-	-

Notes:

- A. Carcinogenic Annual Average. Units in (ng/m³)-1.
- B. Ontario Ambient Air Quality Criteria The standard for benzo(a)pyrene (B(a)P) is for B(a)P as a surrogate for PAHs.
- C. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds
- D. O. Reg. 419/05 24 Hour Guideline
- E. Application of the air standard for dioxins, furans, and dioxin-like PCBs requires the calculation of the total toxicity equivalent (TEQ) concentration contributed by all dioxin-like compounds in the mixture. TEQ is calculated using the methodology as per the O. Reg.419/05 Summary of Standards and Guidelines, and the corresponding WHO₂₀₀₅ toxic equivalency factors (TEFs).
- F. O. Reg. 419/05 Schedule 3 Standard phased in after July 1, 2016
- G. Toxic Equivalency Factors (TEFs) are shown as benzo(a)pyrene equivalents.

Project No.: 160950528

2.7

Instrumentation Summary and Field Conditions February 9, 2017

3.0 INSTRUMENTATION SUMMARY AND FIELD CONDITIONS

3.1 INSTRUMENTATION

The measurement program at the monitoring stations includes both continuous and non-continuous monitors to sample air contaminant concentrations.

Monitoring for respirable particulate matter (PM_{2.5}), nitrogen oxides (NO_x) and sulphur dioxide (SO₂) are conducted on a continuous basis. A summary of the continuous monitors and a brief description of their principle of operation are provided in **Table 3-1** below.

Table 3-1 Summary of Continuous Ambient Air Quality Monitors

Contaminant	Monitor	Principle of Operation	Range	Time Interval
PM _{2.5}	Thermo Sharp 5030 Synchronized Hybrid Ambient Real-time Particulate Monitor	Light Scattering Photometry / Beta Attenuation - Consists of a carbon14 source, detector and light scattering Nephelometer in a rack-mountable enclosure. The Thermo Sharp utilizes a continuous (non-step wise) hybrid mass measurement and a combination of beta attenuation and light scattering technology. The unit's filter tape is automatically advanced based upon a user defined frequency or particulate loading.	0 -10 mg/m³	1 minute
NO, NO ₂ , NO _X	API Model 200E Chemiluminescence Analyzer	Chemiluminescence - Uses a chemiluminescence detection principle and microprocessor technology for ambient continuous emissions monitoring (CEM). Measurements are automatically compensated for temperature and pressure changes.	0 – 1000 ppb	1 second
SO ₂	Teledyne Monitor Labs Sulphur Dioxide Analyzer Model T100	Pulsed Florescence - SO ₂ levels are measured based on the principle that SO ₂ has a strong ultraviolet (UV) absorption at a wavelength between 200 and 240 nanometres (nm). The absorption of photons at these wavelengths results in the emission of fluorescence photons at a higher wavelength. The amount of fluorescence measured is directly proportional to the concentration of SO ₂ .	0 – 1000 ppb	1 second

Instrumentation Summary and Field Conditions February 9, 2017

Two manually operated, hi-volume air samplers are installed at both the Courtice WPCP (predominantly upwind) and Rundle Road (predominantly downwind) Stations to collect metals in total suspended particulate (TSP), polycyclic aromatic hydrocarbons (PAHs), and dioxins and furans. Sampling for these contaminants is conducted following the methodology and analyses described in the Ambient Monitoring Plan (Stantec, 2012), as presented in **Table 3-2**. Monitoring for metals in TSP is also conducted at the Fence Line Station. The samples were submitted to Maxxam Analytics Inc., a Canadian Association for Laboratory Accreditation Inc. (CALA) / Standards Council of Canada (SCC) accredited laboratory, for analysis.

Table 3-2 Summary of Non-Continuous Ambient Air Quality Monitors

Contaminant	Sampler	Filter Media	Lab Analysis	Sampling Schedule
TSP and metals	Tisch Environmental TE- 5170 mass-flow high volume sampler	Pre-weighed, conditioned Teflon coated glass fibre filters	Weighed for particulate loading and analysed using the Atomic Emission Spectroscopy / Inductively Coupled Plasma (AES/ICP) technique to determine metals content	24 hour sample taken every 6 days
PAHs	Tisch Environmental TE-	Dual chambered sampling module	Gas Chromatography / Mass Spectrometry	24 hour sample taken every 12 days
Dioxins and Furans	1000 mass-flow high volume air sampler	with a Teflon- coated glass fibre filter and a Poly-Urethane Foam (PUF) cartridge	(GC/MS)	24 hour sample taken every 24 days. At the request of the Region this was increased to every 12 days from September 9 to November 20, 2016.

Instrumentation Summary and Field Conditions February 9, 2017

Horizontal wind speed, wind direction, atmospheric temperature, relative humidity, and rainfall are measured at the predominantly downwind Rundle Road Station. The meteorological sensors at the Rundle Road Station are mounted on an external 10 m aluminum tower. Atmospheric temperature, relative humidity, rainfall, and barometric pressure are measured at the predominantly upwind Courtice WPCP Station. Wind speed and wind direction data at the predominantly upwind location are measured on a 20 m tower and are provided by the Courtice Water Pollution Control Plant.

The meteorological equipment is summarized in **Table 3-3**.

Table 3-3 Summary of Meteorological Equipment

Parameter	Equipment
Wind Speed/Wind Direction	Met One Instruments Inc. Model 034B
Temperature/Relative Humidity	Campbell Scientific Model HMP60
Atmospheric Pressure	Campbell Scientific Model CS106
Rainfall	Texas Electronic TE525M

A Campbell Scientific CRX1000 data acquisition system (DAS) is used to collect continuous instrument monitoring data and status codes from the continuous ambient air quality monitors. Continuous station data is maintained in the data loggers, and data is viewed locally using a laptop and the relevant DAS software applications. Remote data transmission is accomplished by the periodic transmission of collected station air quality data via cellular phone.

3.2 INSTRUMENTATION ISSUES

Some operational issues at the sites were encountered this quarter including an SO_2 monitor span calibration issue at the Rundle Road Station and power outages at the Courtice WPCP and Rundle Road Stations. A summary of operational issues for each measurement parameter during the monitoring period is presented in **Table 3-4** to **Table 3-6**.

Instrumentation Summary and Field Conditions February 9, 2017

Table 3-4 Summary of Instrument Issues at the Courtice WPCP Station (Predominately Upwind)

Parameter	Issues	Time Frame	Remedial Action	
SO ₂	Internal clock not synchronized with actual time.	25-Oct-16 and 9-Nov-16	Adjusted internal clock. All data intact.	
NO _X	Internal clock not synchronized with actual time.	25-Oct-16, 9-Nov-16, 28- Nov-16, 16-Dec-16	Adjusted internal clock. All data intact.	
PM _{2.5}	Pump was not running (likely due to power trip) during weekly site visit.	Noted 28-Nov-16	Restarted monitor/ pump. Reviewed and invalidated 49 hour of data.	
TSP/Metals Hi-Vol	Filter was wet when collected, resulting in a low post-run flow check. Snow likely blew onto the filter during a precipitation event on 4-Dec-16.	2-Dec-16 sample. Issue noted on 5-Dec-16.	Review of the circular chart record indicates that the sampler was operating at 40 cfm throughout the sample run. Sample results were comparable to other stations, therefore, the results were considered valid.	
PAH/ D/F Hi- Vol	None			
Other	None			

Instrumentation Summary and Field Conditions February 9, 2017

Table 3-5 Summary of Instrument Issues at the Rundle Road Station (Predominately Downwind)

Parameter	Issues	Time Frame	Remedial Action
SO ₂	Internal clock not synchronized with actual time.	25-Oct-16 and 9-Nov-16	Adjusted internal clock. All data intact.
	Span setting was found to be outside of MOECC allowable range during the MOECC Audit on	12-Dec-16 to 13-Dec-16	Monitor was recalibrated using the MOECC's calibration gas. Span adjustment applied to affected data. No data lost.
	December 13, 2016. Issue determined to be due to Valley Environmental Services' (VES) calibration gas cylinder going off-		VES has acquired another SO ₂ calibration gas cylinder and will have the concentration confirmed by the MOECC's laboratory on a periodic basis.
	specification.		VES will review and update their SO ₂ gas handling protocol.
NOx	Internal clock not synchronized with actual time.	25-Oct-16 and 9-Nov-16	Adjusted internal clock. All data intact.
	Elevated auto zero.	14-Nov-16 to 25-Nov-16	A critical flow orifice in the unit's auto-calibration system became partially blocked. The orifice was replaced by Valley Environmental. The issue did not affect routine measurements - all data intact.
	Evidence of a brief power outage.	Outage on 1-Dec-16	Reviewed and invalidated 1 minute of data. UPS powered all other units.
PM _{2.5}	None.		
TSP/Metals Hi-Vol	Filter was wet when collected, resulting in a low post-run flow check. Snow likely blew onto the filter during a precipitation event on December 4, 2016.	2-Dec-16 sample. Issue noted on 5-Dec-16.	Review of the circular chart record indicates that the sampler was operating at 40 cfm throughout the sample run. Sample results were comparable to other stations, therefore, the results were considered valid.
PAH/ D/F Hi- Vol	Hi-vol stopped partway through sample run due to the ground fault interrupter (GFI) being tripped during the run.	Noted 28-Dec-16, Affected 26-Dec-16 sample (PAH sample only)	Checked wiring and resealed plugs. Reset GFI. PAH sample invalidated since the hi-vol did not run for a sufficient duration.
Other	Evidence of Power Outage	17-Dec-16	Reviewed and invalidated 3 hours of data for all continuous parameters.

Instrumentation Summary and Field Conditions February 9, 2017

Table 3-6 Summary of Instrument Issues at Fence Line Station

Parameter	Issues	Time Frame	Remedial Action
TSP/Metals Hi-Vol	None		

3.3 INSTRUMENTATION RECOVERY RATES

Data recovery rates for each continuous monitor at the three monitoring stations during Quarter 4 (October to December 2016) are presented in **Table 3-7** to **Table 3-9**.

Table 3-7 Summary of Data Recovery Rates for the Courtice WPCP Station (Predominately Upwind) – October to December 2016

Parameter	Valid Measurement Hours	Data Recovery Rate (%)
SO ₂	2197	99.5% A
NOx	2193	99.3% A
PM _{2.5}	2153	97.5% ^A
Temperature	2208	100.0% ^A
Rainfall	2208	100.0% ^A
Relative Humidity	2208	100.0% ^A
Pressure	2208	100.0% ^A
Wind Speed/Direction	2207	100.0% ^A
TSP/Metals	15 ^B	100%
PAHs	8 B	100%
Dioxins and Furans	6 B, C	100%

Notes:

- A. Includes instrumentation issues summarized in Table 3-4, quarterly MOECC audit and monthly calibrations.
- B. Number of filters/24-hour average samples.
- C. Includes additional dioxins and furans sampling requested by the Regional Municipality of Durham.

Table 3-8 Summary of Data Recovery Rates for the Rundle Road Station (Predominately Downwind) – October to December 2016

Parameter	Valid Measurement Hours Data Recovery Ra	
SO ₂	2190	99.2% ^A
NOx	2183	98.9% ^A
PM _{2.5}	2189	99.1% ^A
Temperature	2205	99.9% ^A
Rainfall	2204	99.8% ^A

Instrumentation Summary and Field Conditions February 9, 2017

Table 3-8 Summary of Data Recovery Rates for the Rundle Road Station (Predominately Downwind) – October to December 2016

Parameter	Valid Measurement Hours	Data Recovery Rate (%)	
Relative Humidity	2204	99.8% ^A	
Wind Speed/Direction	2204	99.8% ^A	
TSP/Metals	15 ^B	100%	
PAHs	7 B	88% ^A	
Dioxins and Furans	6 B, C	100%	

Notes:

- A. Includes instrumentation issues summarized in Table 3-5, quarterly MOECC audit, and monthly calibrations.
- B. Number of filters/24-hour average samples.
- C. Includes additional dioxins and furans sampling requested by the Regional Municipality of Durham.

Table 3-9 Summary of Data Recovery Rates for the Fence Line Station – October to December 2016

Parameter	ver Valid Measurements ^B Data Recove	
TSP/Metals ^A	15	100%

Notes:

- A. Includes instrumentation issues summarized in Table 3-6.
- B. Number of filters/24-hour average samples.

3.4 CONTINUOUS MONITOR INTERNAL CALIBRATIONS

Summaries of the Courtice WPCP and Rundle Road Station SO₂ and NO_x monitor daily internal zero checks for Q4 2016 are presented in **Appendix A**. Daily internal zero checks are informal checks of an analyzer's response intended as a quick, convenient way to check for possible analyzer malfunction or calibration drift. They are not recommended as a basis for analyzer zero or span adjustments, calibration updates, or adjustment of ambient data (Environment Canada, 1995).

All internal zero calibrations of the SO₂ and NO_x analyzers at the Courtice WPCP Station and the SO₂ analyzer at the Rundle Road Station were less than 5 ppb throughout Q4.

Automatic internal zero calibrations at the Rundle Road Station NOx monitor greater than 5 ppb were observed from November 12 to 24, 2016 due to a partially blocked orifice in the unit's autocalibration system. Valley Environmental Services replaced the critical flow orifice on November 25, 2016. This issue only affected the unit's auto-calibration system and did not affect routine measurements, thus no corrections to the measurement data were required. The internal zero

Instrumentation Summary and Field Conditions February 9, 2017

calibrations for the same unit were greater than 5 ppb from December 9 to 11, 2016. This was determined to be due to residual NO₂ being trapped in the auto-calibration system from the previous orifice blockage. The auto-calibration system was purged on December 12, 2016 to rectify this issue. No correction of the measurement data was required.

3.5 FIELD CONDITION OBSERVATIONS

During Q4 2016 activities in the vicinity of the ambient air monitoring stations were observed that had the potential to be affecting air quality levels during the period. These observations were noted by Stantec and Valley Environmental Services personnel during field visits and by Regional Municipality of Durham personnel located at the DYEC.

Construction of Highway 418, which will connect with Highway 401 between Courtice Road and Crago Road was ongoing during this quarter. Highway 418 will provide a north-south link between Highway 401 and the Phase 2 expansion of Highway 407. The Highway 401/418 interchange will be located almost directly north of the DYEC. During October and November the highway construction contractor worked in a large area immediately north of the DYEC between Energy Drive and Hwy 401 for the relocation/re-alignment of South Service Road. The new South Service Road will be located immediately south of the existing South Service Road and run between Courtice Road and Crago Road. A photograph of the South Service Road realignment is shown in **Figure 3-1**.

On the north side of Highway 401, the highway construction contractor has located a construction camp along Baseline Road about 1.5 km west of the Rundle Road Station. Construction of Highway 418 from north of Baseline Road was also occurring, with clearing, grading and other activities causing dust suspension from haul truck and excavator activities. This activity was occurring about 1.5 km to the west of the Rundle Road Station. A photograph of construction activities occurring north of Baseline Road is presented in **Figure 3-2**.

Other activities in the vicinity of the monitoring stations that had the potential to affect local air quality included:

- Hydro crews working on the perimeter of the new South Service Road construction area in December 2016.
- Trucks idling while loading and unloading supplies at the WPCP Chemical Building about 50 m north of the Courtice WPCP Station.
- A fire on the roof of the DYEC on December 11, 2016, lasting from approximately 10:00 12:00.

Instrumentation Summary and Field Conditions February 9, 2017

Figure 3-1 View of South Service Road Realignment Construction (Looking South from the Existing South Service Road)

Figure 3-2 View from Baseline Road (between Solina Road and Courtice Road)
Looking Northwest at Highway 418 Construction Activities

Summary of Ambient Measurements February 9, 2017

4.0 SUMMARY OF AMBIENT MEASUREMENTS

The following sections provide summaries of the validated data and the validation done on each parameter.

4.1 METEOROLOGICAL DATA

A summary of the maximum, minimum, arithmetic mean, and standard deviation of the hourly average meteorological parameters measured at the two monitoring stations for the October to December 2016 period are presented in **Table 4-1**.

Table 4-1 Summary of Hourly Meteorological Measurements – October to December 2016

Parameter		Courtice WPCP Station (Predominately Upwind)	Rundle Road Station (Predominately Downwind)	Units
	Maximum	20.7	21.7	0C
	Minimum	-14.4	-17.2	0C
	Mean (October)	11.7	11.0	°C
Temperature	Mean (November)	6.1	5.5	0C
	Mean (December)	-0.8	-1.5	0C
	Mean (Period)	5.6	5.0	0C
	Standard Deviation	7.1	7.2	°C
	Maximum	4.6	4.9	mm
	Minimum	0.0	0.0	mm
	Mean (October)	0.05	0.06	mm
Rainfall	Mean (November)	0.06	0.06	mm
	Mean (December)	0.07	0.09	mm
	Mean (Period)	0.06	0.07	mm
	Standard Deviation	0.31	0.35	mm
	Maximum	96.1	100.0	%
	Minimum	39.5	40.9	%
	Mean (October)	72.8	78.1	%
Relative Humidity	Mean (November)	75.3	80.0	%
	Mean (December)	71.4	76.5	%
	Mean (Period)	73.1	78.2	%
	Standard Deviation	12.3	13.6	%

Summary of Ambient Measurements February 9, 2017

Table 4-1 Summary of Hourly Meteorological Measurements – October to December 2016

Parameter		Courtice WPCP Station (Predominately Upwind)	Rundle Road Station (Predominately Downwind)	Units
	Maximum	30.4	-	in Hg
	Minimum	29.1	-	in Hg
	Mean (October)	29.8	-	in Hg
Pressure ^A	Mean (November)	29.7	-	in Hg
	Mean (December)	29.7	-	in Hg
	Mean (Period)	29.8	-	in Hg
	Standard Deviation	0.2	-	in Hg
	Maximum	40.3	43.5	km/hr
	Minimum	0.8	0.0	km/hr
	Mean (October)	12.9	9.6	km/hr
Wind Speed B	Mean (November)	11.7	10.5	km/hr
	Mean (December)	15.1	14.9	km/hr
	Mean (Period)	13.2	11.6	km/hr
	Standard Deviation	7.1	7.4	km/hr

Notes:

- A. Pressure is not measured at the Rundle Road Station.
- B. Wind speed at Courtice WPCP Station measured at 20 m and at Rundle Road Station at 10 m.

Wind roses showing the directionality and speed at each location are presented in **Figure 4-1**. The length of the radial barbs gives the total percent frequency of winds from the indicated direction, while portions of the barbs of different widths indicate the frequency associated with each wind speed category.

Winds over the three-month period at the Courtice WPCP Station occurred predominantly from westerly directions. Wind contribution from the south was low. Higher wind speeds occurred from southwesterly, northwesterly, and easterly directions, and lower wind speeds from northerly directions.

At the Rundle Road Station, the wind rose over the three-month period showed winds predominantly occurring from westerly directions. Higher wind speeds are noted occurring from the west-southwest.

Stantec

Summary of Ambient Measurements February 9, 2017

Courtice WPCP Station (Predominately Upwind) at Rundle Road Station (Predominately Downwind) 20 m Above Ground at 10 m Above Ground NORTH NORTH 16% 16% EAST WEST EAST WIND SPEED WIND SPEED (m/s)>= 11.1 >= 11.1 8.8 - 11.1 8.8 - 11.1 5.7 - 8.8 5.7 - 8.8 SOUTH SOUTH 3.6 - 5.7 3.6 - 5.7 2.1 - 3.6 2.1 - 3.6 05-21 0.5 - 2.1 Calms: 0.77% Calms: 3.62%

Figure 4-1 Wind Roses for October to December 2016

4.2 CAC AMBIENT AIR QUALITY MEASUREMENTS

A summary of the maximum, minimum, arithmetic mean, and standard deviation of the CAC pollutant concentrations measured at each station are presented in **Table 4-2**. Also presented in this table are the number of exceedances (if any occurred), of the relevant O. Reg. 419/05 Schedule 3 Standards, Ontario Ambient Air Quality Criteria (AAQC) or health-based criteria for each contaminant. All monitored contaminants were below their applicable criteria during the period October to December 2016.

Nitric oxide (NO) has no regulatory criteria as discussed in Section 4.2.2 below. There are both hourly and daily AAQCs as well as O. Reg. 419/05 Schedule 3 Standards for NO_X which are based on health effects of NO₂. As specified in the MOECC's listing of AAQCs (MOECC, 2012a) the AAQC were compared to measured NO₂ concentrations in this report. However, as per the current April 2012 version of O. Reg. 419/05 Summary of Standards and Guidelines, the Schedule 3 Standard for NO_X (MOECC, 2012b) was compared to the monitored NO_X levels.

A comparison of the maximum measured data to their respective air quality criteria is presented graphically in **Figure 4-2**.

Stantec

Summary of Ambient Measurements February 9, 2017

Table 4-2 Summary of Ambient CAC Monitoring Data – October to December 2016

Pollutant	Averaging		chedule 3 / HHRA Based Criteria			/PCP Station Itely Upwind)	Rundle Ro (Predominate	ad Station ly Downwind)
rollolatii	Period	ppb	μg/m³		Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Maximum	40.6	117.5	7.8	21.6
				Minimum	0.0	0.0	0.0	0.0
				Mean (October)	1.7	4.8	0.4	1.1
	1	250	400	Mean (November)	2.4	6.9	0.1	0.4
	l	250	690	Mean (December)	1.1	3.2	0.5	1.4
				Mean (Period)	1.8	5.0	0.3	1.0
				Standard Deviation	3.6	10.4	0.4	1.2
202				# of Exceedances	0	0	0	0
SO ₂				Maximum	8.8	26.0	1.2	3.5
				Minimum	0.0	0.0	0.0	0.0
				Mean (October)	1.7	4.7	0.4	1.1
	24	100	275	Mean (November)	2.5	7.0	0.1	0.4
	24	100	275	Mean (December)	1.1	3.2	0.5	1.4
				Mean (Period)	1.8	5.0	0.3	1.0
				Standard Deviation	1.8	5.2	0.3	0.9
				# of Exceedances	0	0	0	0

Summary of Ambient Measurements February 9, 2017

Table 4-2 Summary of Ambient CAC Monitoring Data – October to December 2016

Pollutant	Averaging		hedule 3 / HHRA Based Criteria			/PCP Station tely Upwind)	Rundle Ro (Predominate	ad Station ly Downwind)
rollularii	Period	ppb	μg/m³		Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Maximum	-	24.0	-	41.8
				Minimum	-	1.0	-	0.2
				Mean (October)	-	3.4	-	8.1
D1.4	0.4	N1 / A	00.4	Mean (November)	-	7.4	-	13.0
PM _{2.5}	24	N/A	28 ^A	Mean (December)	-	6.2	-	13.5
				Mean (Period)	-	5.6	-	11.5
				Standard Deviation	-	4.0	-	9.5
				# of Exceedances	-	N/A	-	N/A
				Maximum	35.5	77.0	31.0	64.1
				Minimum	0.0	0.0	0.0	0.0
				Mean (October)	4.0	7.9	2.9	5.6
		000 B	400 B	Mean (November)	8.1	16.3	6.3	12.6
	1	200 ^B	400 B	Mean (December)	6.9	14.2	7.6	15.5
NO				Mean (Period)	6.3	12.8	5.6	11.2
NO ₂				Standard Deviation	5.7	11.6	5.4	10.9
				# of Exceedances	0	0	0	0
				Maximum	18.8	38.3	21.5	44.1
	24	100 P	200 P	Minimum	0.4	0.8	0.0	0.0
	24	100 ^B	200 ^B	Mean (October)	3.9	7.7	2.9	5.6
				Mean (November)	8.1	16.3	6.1	12.3

Project No.: 160950528

Summary of Ambient Measurements February 9, 2017

Table 4-2 Summary of Ambient CAC Monitoring Data – October to December 2016

Pollutant	Averaging		chedule 3 / HHRA Based Criteria			PCP Station tely Upwind)	Rundle Ro (Predominate	ad Station ly Downwind)
rollolalli	Period	ppb	μg/m³		Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Mean (December)	7.0	14.4	7.7	15.8
				Mean (Period)	6.3	12.8	5.6	11.2
				Standard Deviation	3.5	7.2	4.0	8.1
				# of Exceedances	0	0	0	0
				Maximum	60.8	80.6	42.7	54.5
				Minimum	0.0	0.0	0.0	0.0
				Mean (October)	1.9	2.5	1.9	2.4
	1	NA	NA	Mean (November)	5.0	6.5	2.9	3.8
	'	IVA	IVA	Mean (December)	1.7	2.3	3.4	4.5
				Mean (Period)	2.8	3.7	2.7	3.6
				Standard Deviation	5.9	7.8	3.3	4.3
NOC				# of Exceedances	N/A	N/A	N/A	N/A
NOS				Maximum	21.5	28.2	9.2	11.9
				Minimum	0.4	0.5	0.2	0.2
				Mean (October)	1.8	2.3	1.9	2.4
	24	NIA	NIA	Mean (November)	5.1	6.6	2.9	3.8
	24	NA	NA	Mean (December)	1.7	2.3	3.4	4.6
				Mean (Period)	2.8	3.7	2.7	3.6
				Standard Deviation	3.2	4.2	1.8	2.4
				# of Exceedances	N/A	N/A	N/A	N/A

Project No.: 160950528

Summary of Ambient Measurements February 9, 2017

Table 4-2 Summary of Ambient CAC Monitoring Data – October to December 2016

Pollutant	Averaging		chedule 3 / HHRA Based Criteria			/PCP Station tely Upwind)	Rundle Ro (Predominate	ad Station ly Downwind)
rollolalli	Period	ppb	μg/m³		Concentration (ppbv)	Concentration (µg/m³)	Concentration (ppbv)	Concentration (µg/m³)
				Maximum	88.0	178.8	71.3	139.5
				Minimum	0.0	0.0	0.0	0.0
				Mean (October)	5.7	11.4	4.5	8.7
	1	200 B	400 B	Mean (November)	13.0	26.1	9.2	18.5
	I	200 ^B	400 ^B	Mean (December)	8.7	17.8	11.0	22.5
				Mean (Period)	9.1	18.3	8.2	16.6
				Standard Deviation	10.5	21.2	7.5	15.2
NO				# of Exceedances	0	0	0	0
NOx				Maximum	37.6	74.7	28.3	57.8
				Minimum	0.6	1.1	0.0	0.0
				Mean (October)	5.6	11.0	4.5	8.8
	24	100 P	200 B	Mean (November)	13.1	26.2	9.0	18.1
	24	100 ^B	200 5	Mean (December)	8.7	18.0	11.2	22.9
				Mean (Period)	9.1	18.3	8.2	16.6
				Standard Deviation	6.3	12.8	5.2	10.5
				# of Exceedances	0	0	0	0

Notes:

- A. Canadian Ambient Air Quality Standard for Respirable Particulate Matter. The Respirable Particulate Matter Objective is referenced to the 98th percentile over 3 consecutive years.
- B. As per current version (April 2012) of O. Reg. 419/05 Summary of Standards and Guidelines, the air standard for NO_X is compared to a monitored NO_X concentration, although the O. Reg. 419/05 Schedule 3 Standard for NO_X is based on health effects of NO₂.
- C. NO has no regulatory criteria.

Summary of Ambient Measurements February 9, 2017

300 250 AAQC / HHRA Health-Based Standards Concentration (ppb) 200 ■ Maximum Measured 150 Concentration at Courtice WPCP Station 100 ■ Maximum Measured Concentration at Rundle Station 50 0 Hourly SO2 24-Hour SO2 Hourly NO2 24-Hour NO2 Hourly NOx 24-Hour NOx

Figure 4-2 Comparison of NO₂ / NO_X and SO₂ Ambient Air Quality Monitoring Data to Applicable Criteria

Detailed discussion for each measured contaminant is presented in the following sections.

4.2.1 Sulphur Dioxide (SO₂)

Data summaries are presented in **Appendix B** for sulphur dioxide for each station and month as well as time history plots of the hourly and 24-hour average SO₂ concentrations. For the hourly and 24-hour averages, the Ontario AAQCs of 250 ppb and 100 ppb (690 µg/m³ and 275 µg/m³) are shown with blue lines in the respective plot. As shown in these figures, measured ambient SO₂ concentrations at both stations were well below the Ontario AAQCs.

The maximum hourly and 24-hour average SO_2 concentrations measured at the Courtice WPCP Station during October to December 2016 were 40.6 and 8.8 ppb (117.5 and 26.0 μ g/m³) respectively, which are 16.2% and 8.8% of the applicable 1-hour and 24-hour Ontario AAQCs.

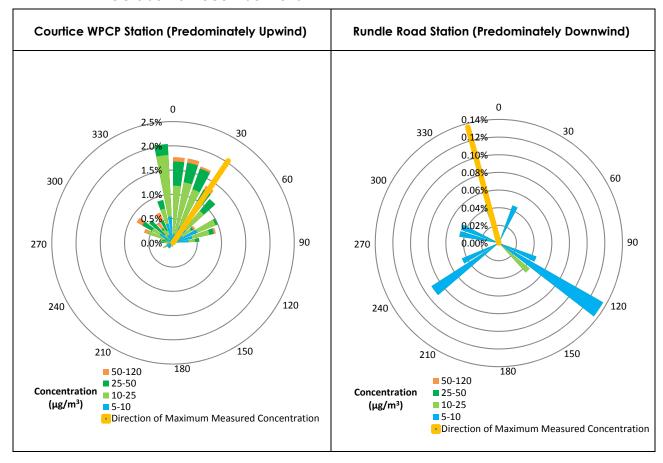
The maximum hourly and 24-hour average SO_2 concentrations measured at the Rundle Road Station during this quarter were 7.8 and 1.2 ppb (21.6 and 3.5 μ g/m³) respectively, which are 3.1% and 1.2% of the applicable 1-hour and 24-hour Ontario AAQCs.

Pollution roses of hourly average SO_2 concentrations measured at the Courtice WPCP Station and Rundle Road Station are presented in **Figure 4-3**. The pollution rose plots present measured hourly average contaminant concentrations versus measured wind direction (over 10° wind sectors). Concentrations less than $5 \mu g/m^3$, which account for 81% of the measurements at the Courtice WPCP and 98% at the Rundle Road Station, have been removed from the plot to allow the distribution of maximum levels to be more clearly shown in the figure. For the Courtice WPCP

Stantec

Summary of Ambient Measurements February 9, 2017

Station, higher hourly concentrations were measured when winds were blowing from northwesterly to northeasterly directions. For the Rundle Road Station, higher hourly concentrations occurred for southeasterly and southwesterly winds.


The maximum hourly SO₂ concentrations measured at the Courtice WPCP and Rundle Road Stations occurred on October 14, 2016 at 07:00 and November 11, 2016 at 9:00 measuring 40.6 and 7.8 ppb, respectively. The highest measured concentration at the Courtice WPCP Station occurred for winds blowing from the northeast, for which the DYEC, Highway 401, a CN railroad and the Highway 418 construction areas were upwind. The rolling 24-hour average SO₂ concentrations measured by the continuous emissions monitors on each boiler at the DYEC during this hour were both 0 mg/Rm³. The maximum measured concentration at the Rundle Road Station occurred for north-northwesterly winds for which agricultural activities and local roads were upwind.

The maximum 24-hour average SO₂ concentrations at the Courtice WPCP and Rundle Road Stations were 8.8 and 1.2 ppb and occurred on December 11, 2016 and October 1, 2016 respectively. The wind directions during the measurements at the Courtice WPCP and Rundle Road Stations were from the northwest and east-southeast respectively. Highway 401 and a CN railroad were upwind of the Courtice WPCP Station during this period, while for the Rundle Road Station measurement, the St. Mary's Cement Facility, CP railroad and Highway 401 were generally upwind of the station for this wind direction.

Summary of Ambient Measurements February 9, 2017

Figure 4-3 Pollution Roses of Measured Hourly Average SO₂ Concentrations – October to December 2016

Summary of Ambient Measurements February 9, 2017

4.2.2 Nitrogen Dioxide (NO₂)

Nitrogen oxides (NO_x) are almost entirely made up of nitric oxide (NO) and nitrogen dioxide (NO₂). Together, they are often referred to as NO_x. Most NO₂ in the atmosphere is formed by the oxidation of NO, which is emitted directly by combustion processes, particularly those at high temperature and pressure. Exposure to both NO and NO₂ can result in adverse health effects to an exposed population. NO₂ is the regulated form of NO_x. Similar to other jurisdictions (e.g., Alberta Environment, World Health Organization), the O. Reg. 419/05 Schedule 3 Standards for NO_x are based on health effects of NO₂, as health effects are seen at much lower concentrations of NO₂ than NO. In this report, because NO₂ is the regulated form of NO_x, the AAQC were compared to measured NO₂ concentrations (as per MOECC 2012a). However, as per the current April 2012 version of O. Reg. 419/05 Summary of Standards and Guidelines, the Schedule 3 NO_x criteria were also compared to the monitored NO_x concentrations (see Section 4.2.3 below).

Data summaries are presented in **Appendix C** for nitrogen dioxide for each station and month as well as time history plots of the hourly and 24-hour average NO_2 concentrations. For the hourly and 24-hour averages, the Ontario AAQCs of 200 ppb and 100 ppb (400 μ g/m³ and 200 μ g/m³) are shown with blue lines on the respective plot. As shown in these figures, measured ambient NO_2 concentrations at both stations were well below the Ontario AAQCs.

The maximum hourly and 24-hour average NO_2 concentrations measured at the Courtice WPCP Station during this quarter were 35.5 and 18.8 ppb (77 and 38.3 μ g/m³) respectively, which are 17.8% and 18.8% of the applicable 1-hour and 24-hour Ontario AAQCs. At the Rundle Road Station, the maximum measured hourly and 24-hour average concentrations were 31 and 21.5 ppb (64.1 and 44.1 μ g/m³), which are 15% and 21.5% of the applicable 1-hour and 24-hour Ontario AAQCs.

Pollution roses of measured hourly average NO_2 concentrations are presented in **Figure 4-4**. To more clearly show the distribution of maximum levels in the figures, concentrations less than $20 \, \mu g/m^3$, which account for 77% of the measurements at the Courtice WPCP Station and 81% at the Rundle Road Station, have been removed from the plots.

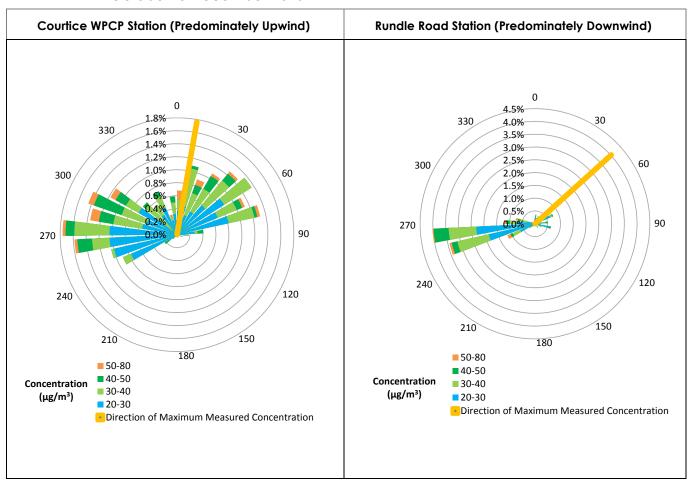
The measured hourly average concentrations at the Courtice WPCP Station were higher for winds from westerly to northwesterly and northeasterly directions. For the Rundle Road Station, higher measured hourly average concentrations occurred for winds blowing from the west.

The maximum measured hourly average NO_2 concentration at the Courtice WPCP was 35.5 ppb on December 15, 2016 at 23:00. During this hour, the wind at the Courtice WPCP Station was blowing from the north, for which Highway 401 and the CN Railroad were upwind. The measured hourly NO_2 concentration at the MOECC Oshawa Station on December 15, 2016 at 23:00 was 8 ppb which is lower than that at the Courtice WPCP Station, suggesting the elevated hourly concentration was due to local emissions sources.

Stantec

Summary of Ambient Measurements February 9, 2017

The maximum measured hourly average NO_2 concentration at the Rundle Road Station was 31 ppb on December 22, 2016 at 1:00, during which winds were blowing from the northeast for which local roads and a CP Railroad were upwind of the Rundle Road Station. At the same time, the measured NO_2 concentration at the MOECC Oshawa Station was 29 ppb, which is comparable to that at the Rundle Station, suggesting that the elevated Rundle Road Station measurement was due to elevated regional NO_2 levels.


The maximum measured hourly average NO_2 concentration at the MOECC Oshawa Station during Q4 was 43 ppb which is comparable to the maximum Courtice WPCP Station measurement during the quarter.

The maximum measured 24-hour average NO₂ concentrations at the Courtice WPCP and Rundle Road Stations both occurred on December 22, 2016 and were 18.8 and 21.5 ppb respectively. The wind direction at the Courtice WPCP Station during this measurement was from the west for which agricultural lands were upwind. At the Rundle Road Station, winds were also from the west for which local roads and local commercial facilities along Baseline Road were upwind. The maximum measured 24-hour average NO₂ concentration (30 ppb) at the MOECC Oshawa Station during this quarter was also measured on December 22, 2016 and was higher than the Courtice WPCP and Rundle Road Station measurements.

Summary of Ambient Measurements February 9, 2017

Figure 4-4 Pollution Roses of Measured Hourly Average NO₂ Concentrations – October to December 2016

4.2.3 Nitrogen Oxides (NO_X)

Data summaries are presented in **Appendix D** for nitrogen oxides for each station and month as well as time history plots of the hourly and 24-hour average NOx concentrations. For the hourly and 24-hour averages, the O. Reg. 419/05 Schedule 3 Standards of 200 ppb and 100 ppb $(400 \, \mu g/m^3)$ and $200 \, \mu g/m^3$) are shown with blue lines on the respective plot. As shown in these figures, the maximum measured ambient hourly and 24-hour average NOx concentrations at the Courtice WPCP Station were below the Ontario AAQCs during this quarter. The measured concentrations at the Rundle Road Station were also well below the Ontario AAQCs.

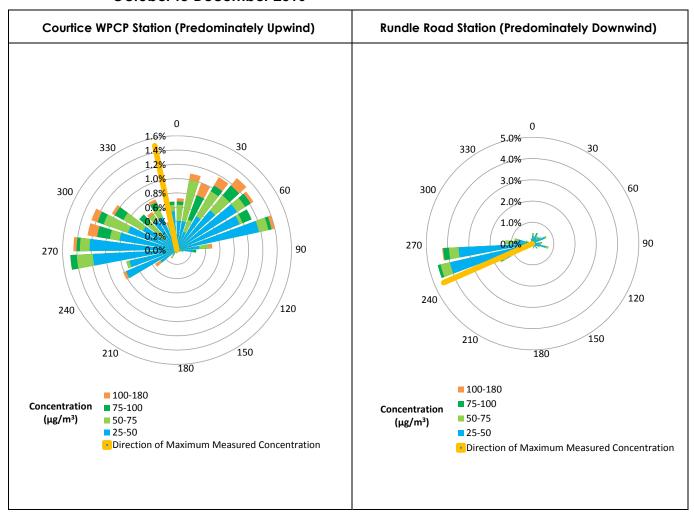
As shown in **Table 4-2**, the maximum hourly average NO_x concentration measured at the Courtice WPCP Station was 88 ppb (178.8 μ g/m³), which is 44% of the 1-hour Ontario AAQCs. The 24-hour average NO_x concentration measured at this station was 37.6 ppb (74.7 μ g/m³), which is 37.6% of the applicable 24-hour Ontario AAQCs. At the Rundle Road Station, the maximum

Summary of Ambient Measurements February 9, 2017

hourly and 24-hour average concentrations measured during this quarter were 71.3 and 28.3 ppb (139.5 and 57.8 µg/m³), which are 36% and 28.3% of the Ontario AAQCs.

Pollution roses of measured hourly average NO_x concentrations for the Courtice WPCP Station and the Rundle Road Station are presented in **Figure 4-5**. Concentrations less than 25 μ g/m³, which account for 77% of the measurements at both the Courtice WPCP and Rundle Road Stations, have been removed from the plots to allow the distribution of maximum levels to be more clearly shown in the figures.

In **Figure 4-5**, higher measured hourly average NO_X concentrations at the Courtice WPCP Station occurred for winds blowing from westerly and northeasterly directions. At the Rundle Road Station, higher measured hourly average concentrations occurred for west-southwesterly wind directions.


The maximum measured hourly average NOx concentrations at the Courtice WPCP and Rundle Road Stations were 88 and 71.3 ppb measured on October 31, 2016 at 18:00 and November 16, 2016 at 12:00 respectively. Winds at the Courtice WPCP Station during this measurement were blowing from the north for which Highway 401, a CN Railroad and the Highway 418 construction area were upwind. Winds at the Rundle Road Station during this measurement were from the west-southwest for which a CP railroad and the Highway 418 construction activities were upwind.

The maximum measured 24-hour average NOx concentrations at the Courtice WPCP and Rundle Road Stations of 37.6 and 28.3 ppb were observed on November 16, 2016 and December 22, 2016. Wind directions during the period at the Courtice WPCP Station were from the north while the Rundle Road Station experienced winds blowing from the west. Highway 401, the CN railroad and Highway 418 construction activities were upwind of the Courtice WPCP Station, while Highway 418 construction activities and local roads were upwind of the Rundle Road Station.

Summary of Ambient Measurements February 9, 2017

Figure 4-5 Pollution Roses of Measured Hourly Average NO_X Concentrations – October to December 2016

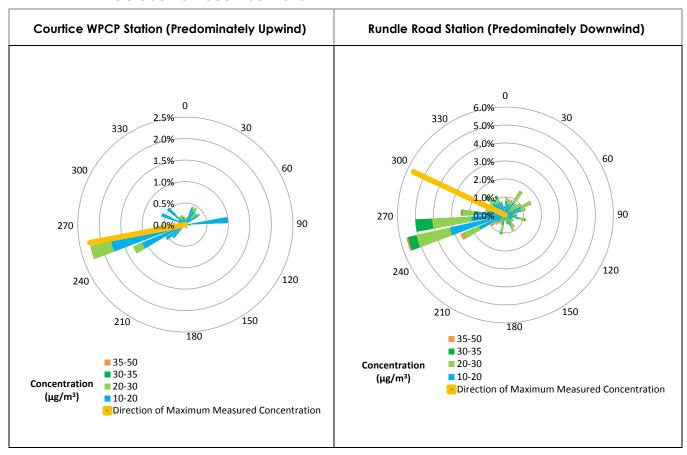
4.2.4 Particulate Matter Smaller than 2.5 Microns (PM_{2.5})

Data summaries and time history plots of measured 24-hour average concentrations are presented in **Appendix E** for PM_{2.5} for the Courtice WPCP and Rundle Road Stations. The maximum measured 24-hour average PM_{2.5} concentrations at the Courtice WPCP and the Rundle Road Stations were 24 μ g/m³ and 41.8 μ g/m³ during this quarter. It should be noted that since an exceedance of the criteria for PM_{2.5} requires the average of the 98th percentile levels in each of three consecutive calendar years to be greater than 28 μ g/m³ (CAAQS) or 30 μ g/m³ (HHRA criteria) whereas the PM_{2.5} measurement period at both stations in the report was three months, there is insufficient data in a quarter to determine with any certainty if exceedances of the CAAQS/HHRA criteria would occur. Discussion of PM_{2.5} measurements with respect to the CAAQS/HHRA criteria will be provided in the 2016 annual report, at which time sufficient data will have been collected to make comparisons.

Summary of Ambient Measurements February 9, 2017

Pollution roses showing the measured 24-hour average ambient $PM_{2.5}$ concentrations versus direction are shown in **Figure 4-6** for both monitoring stations. Concentrations less than 10 μ g/m³, which account for 86% of the measurements at the Courtice WPCP and 55% at the Rundle Road Station, have been removed from the plot to allow the distribution of maximum levels to be more clearly shown in the figure.

Higher measured 24-hour average concentrations occurred for west-southwest winds for the Courtice WPCP Station. For the Rundle Road Station, higher measured 24-hour average concentrations occurred for westerly to west-southwesterly winds.


The maximum measured 24-hour average PM_{2.5} concentrations at the Courtice WPCP and Rundle Road Stations occurred on December 22, 2016 and November 9, 2016 and were 24 and 41.8 μ g/m³ respectively. The maximum measured concentration at the Courtice WPCP Station occurred when winds were blowing from the west-southwest for which the agricultural lands were upwind. On the same day, the MOECC Oshawa Station measured 20.2 μ g/m³, which is similar to the Courtice WPCP measurement and suggests both stations were largely influenced by regional sources. The maximum measured concentration at the Rundle Road Station occurred when winds were from the west-northwest for which local roads and Highway 418 construction activities were upwind. The maximum measured 24-hour PM_{2.5} concentration at the MOECC Oshawa station during this day was 13.8 μ g/m³, which was well below the 41.8 μ g/m³ level measured at the Rundle Road Station. This suggests that the Rundle Road measurement was influenced by local emission sources.

The maximum measured 24-hour average PM_{2.5} concentration at the MOECC Oshawa Station during Q4 was 21.8 μ g/m³, which is comparable to the Courtice WPCP Station measurement during this quarter.

Summary of Ambient Measurements February 9, 2017

Figure 4-6 Pollution Roses of Measured 24-Hour Average PM_{2.5} Concentrations – October to December 2016

4.3 AMBIENT TSP / METALS CONCENTRATIONS

A summary of the maximum and minimum ambient TSP and metals concentrations (for a daily averaging period) are presented in **Table 4-3**. A detailed summary of the concentrations measured for each sample is presented in **Appendix G**.

The maximum measured concentrations of TSP and all metals with MOECC air quality criteria were well below their applicable 24-hour criteria (shown in **Table 4-3** below) at all three stations.

Summary of Ambient Measurements February 9, 2017

Summary of Measured Ambient TSP/Metals Concentrations Table 4-3

		MOECC		Courtice \	WPCP (Predomino	itely Upwind)	Rundle Roc	ad (Predominately	Downwind)		Fence Line	
Contaminant	Units	MOECC Standard	HHRA Health Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
Particulate	μg/m³	120	120	34	8	0	97	9	0	47	11	0
Total Mercury (Hg)	μg/m³	2	2	1.36E-05	6.33E-06 A	0	1.99E-05	6.36E-06 A	0	2.00E-05	6.22E-06 A	0
Aluminum (Al)	μg/m³	4.8	-	1.71E-01	1.58E-02 A	0	7.86E-01	1.63E-02 A	0	2.28E-01	4.17E-02	0
Antimony (Sb)	μg/m³	25	25	3.54E-03 A	3.17E-03 A	0	3.57E-03 A	3.18E-03 A	0	3.53E-03 A	3.11E-03 A	0
Arsenic (As)	μg/m³	0.3	0.3	2.12E-03 A	1.90E-03 A	0	2.14E-03 A	1.91E-03 A	0	2.12E-03 A	1.87E-03 A	0
Barium (Ba)	μg/m³	10	10	3.39E-02	3.25E-03	0	2.30E-02	3.04E-03	0	2.29E-02	4.27E-03	0
Beryllium (Be)	μg/m³	0.01	0.01	3.54E-04 A	3.17E-04 A	0	3.57E-04 A	3.18E-04 A	0	3.53E-04 A	3.11E-04 A	0
Bismuth (Bi)	μg/m³	-	-	2.12E-03 A	1.90E-03 A	-	2.14E-03 A	1.91E-03 A	-	2.12E-03 A	1.87E-03 A	-
Boron (B)	μg/m³	120	-	2.12E-03 A	1.90E-03 A	0	2.14E-03 A	1.91E-03 A	0	2.12E-03 A	1.87E-03 A	0
Cadmium (Cd)	μg/m³	0.025	0.025	7.08E-04 A	6.33E-04 A	0	7.13E-04 A	6.36E-04 A	0	7.07E-04 A	6.22E-04 A	0
Chromium (Cr)	μg/m³	0.5	-	7.74E-03	1.58E-03 A	0	5.40E-03	1.59E-03 A	0	3.34E-03	1.56E-03 A	0
Cobalt (Co)	μg/m³	0.1	0.1	7.08E-04 A	6.33E-04 A	0	7.13E-04 A	6.36E-04 A	0	7.07E-04 A	6.22E-04 A	0
Copper (Cu)	μg/m³	50	-	5.31E-02	6.87E-03	0	1.16E-01	2.09E-02	0	6.55E-02	2.18E-02	0
Iron (Fe)	μg/m³	4	-	6.06E-01	1.05E-01	0	1.83E+00	9.00E-02	0	7.26E-01	1.13E-01	0
Lead (Pb)	μg/m³	0.5	0.5	6.13E-03	9.50E-04 A	0	7.25E-03	9.80E-04 A	0	7.12E-03	9.33E-04 A	0
Magnesium (Mg)	μg/m³	-	-	3.85E-01	5.07E-02	-	1.02E+00	5.29E-02	-	4.50E-01	6.97E-02	-
Manganese (Mn)	μg/m³	0.4	-	1.73E-02	3.55E-03	0	4.91E-02	3.24E-03	0	2.28E-02	3.81E-03	0
Molybdenum (Mo)	μg/m³	120	-	1.06E-03 A	9.50E-04 A	0	4.44E-03	9.90E-04 A	0	1.06E-03 A	9.33E-04 A	0
Nickel (Ni)	μg/m³	0.2	-	2.23E-03	9.50E-04 A	0	2.73E-03	9.54E-04 A	0	3.39E-03	9.33E-04 A	0
Phosphorus (P)	μg/m³	-	-	5.54E-02	8.42E-03 A	-	7.11E-02	8.51E-03 A	-	6.35E-02	7.87E-03 A	-
Selenium (Se)	μg/m³	10	10	3.54E-03 A	3.17E-03 A	0	3.57E-03 A	3.18E-03 A	0	3.53E-03 A	3.11E-03 A	0
Silver (Ag)	μg/m³	1	1	1.77E-03 A	1.58E-03 A	0	1.78E-03 A	1.59E-03 A	0	1.77E-03 A	1.56E-03 A	0
Strontium (Sr)	μg/m³	120	-	6.09E-03	1.20E-03	0	2.11E-02	9.26E-04	0	8.17E-03	1.38E-03	0
Thallium (TI)	μg/m³	-	-	3.54E-03 A	3.17E-03 A	-	3.57E-03 A	3.18E-03 A	-	3.53E-03 A	3.11E-03 A	-
Tin (Sn)	μg/m³	10	10	3.54E-03 A	3.17E-03 A	0	3.57E-03 A	3.18E-03 A	0	3.53E-03 A	3.11E-03 A	0
Titanium (Ti)	μg/m³	120	-	9.34E-03	3.17E-03 A	0	3.08E-02	3.27E-03 A	0	1.49E-02	3.11E-03 A	0
Vanadium (V)	μg/m³	2	1	1.77E-03 A	1.58E-03 A	0	1.78E-03 A	1.59E-03 A	0	1.77E-03 A	1.56E-03 A	0
Zinc (Zn)	μg/m³	120	-	9.54E-02	7.85E-03	0	6.66E-02	6.02E-03	0	7.73E-02	1.18E-02	0
Zirconium (Zr)	μg/m³	20	-	1.77E-03 A	1.58E-03 A	0	1.78E-03 A	1.59E-03 A	0	1.77E-03 A	1.56E-03 A	0
Total Uranium (U)	μg/m³	1.5	-	1.59E-04 A	1.43E-04 A	0	1.60E-04 A	1.43E-04 A	0	1.59E-04 A	1.40E-04 A	0

Note: A. Measured concentration was less than the laboratory method detection limit.

4.18 Project No.: 160950528

Summary of Ambient Measurements February 9, 2017

4.4 AMBIENT PAH CONCENTRATIONS

A summary of the maximum and minimum ambient PAH concentrations (for a daily averaging period) are presented in **Table 4-4**. In this summary, both individual PAHs as well as a total PAH concentration are reported. A detailed summary of the concentrations measured for each sample is presented in **Appendix H**.

The maximum measured concentrations of the PAHs with MOECC AAQCs were below their applicable 24-hour criteria, with the exception of the benzo(a)pyrene (B(a)P) measurements collected at the Courtice WPCP Station and the Rundle Road Station on November 8, 2016.

The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this recently enacted AAQC are commonly measured throughout Ontario. B(a)P measurement data available from the National Air Pollutant Surveillance (NAPS) network for Ontario in 2013 (for Simcoe, Toronto, and Hamilton), all had maximum levels above the AAQC (varying between 136% - 6,220% of the criteria). Available NAPS data for Ontario in 2012 (for Windsor, Toronto, and Hamilton) showed maximum B(a)P levels at these stations that varied between 716% - 2,920% of the Ontario AAQCs. In 2011, NAPS data available for seven Ontario stations (Windsor, Toronto, Etobicoke, Hamilton, Simcoe, Pt. Petrie, and Burnt Island) showed exceedances at six of the seven stations, with only the remote Burnt Island Ontario station reporting a maximum level below the MOECC AAQC. In 2010, all of these stations, including the Burnt Island station, measured B(a)P levels above the AAQC.

Benzo(a)pyrene (B(a)P) is a byproduct of a wide variety of natural and man-made combustion processes (including motor vehicles, natural gas, wood, refuse, oil, forest fires, etc.) and is widely present in the environment (including being present in soil and water).

The B(a)P samples collected at the Courtice WPCP and Rundle Road Stations on November 8, 2016 exceeded the Ontario AAQC by 107% and 250%, respectively. The B(a)P samples were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health based criterion. A summary of the wind direction and potential source contributions for this measurement is presented in **Table 4-5**.

Based on the air quality assessments completed during the Environmental Assessment Study and the Environmental Compliance Approval application for the DYEC, the facility will not be a significant contributor of B(a)P. Therefore, ambient B(a)P levels are not expected to be substantially impacted by the operation of the DYEC.

Summary of Ambient Measurements February 9, 2017

Table 4-4 Summary of Measured Ambient PAH Concentrations

			HHRA	Courtice WP	CP (Predomin	ately Upwind)	Rundle Roc	ad (Predomina	tely Downwind)
Contaminant	Units	MOECC Standards	Health Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
		0.05 ^A				1			1
Benzo(a)pyrene	ng/m³	5 ^B	1	0.104	0.006	0	0.175	0.006	0
		1.1 ^C				0			0
1-Methylnaphthalene	ng/m³	12,000	-	8.08E+00	1.22E+00	0	1.43E+01	8.95E-01	0
2-Methylnaphthalene	ng/m³	10,000	-	1.24E+01	1.91E+00	0	2.73E+01	1.34E+00	0
Acenaphthene	ng/m³	-	-	3.52E+00	1.05E-01 ^F	-	1.52E+01	1.03E-01 ^F	-
Acenaphthylene	ng/m³	3,500	-	2.42E-01	6.84E-02 ^F	0	2.13E-01	6.77E-02 ^F	0
Anthracene	ng/m³	200	-	1.10E-01 F	6.84E-02 ^F	0	4.21E-01	6.77E-02 ^F	0
Benzo(a)anthracene	ng/m³	-	-	1.10E-01 F	6.84E-02 ^F	-	1.10E-01 ^F	6.77E-02 ^F	-
Benzo(a)fluorene	ng/m³	-	-	2.20E-01 F	1.37E-01 ^F	-	2.19E-01 ^F	1.35E-01 ^F	-
Benzo(b)fluoranthene	ng/m³	-	-	1.10E-01 ^F	6.84E-02 ^F	-	1.10E-01 ^F	6.77E-02 ^F	-
Benzo(b)fluorene	ng/m³	-	-	2.20E-01 F	1.37E-01 ^F	-	2.19E-01 ^F	1.35E-01 ^F	-
Benzo(e)pyrene	ng/m³	-	-	2.20E-01 F	1.37E-01 ^F	-	2.19E-01 ^F	1.35E-01 ^F	-
Benzo(g,h,i)perylene	ng/m³	-	-	1.10E-01 F	6.84E-02 ^F	-	1.10E-01 ^F	6.77E-02 ^F	-
Benzo(k)fluoranthene	ng/m³	-	-	1.10E-01 ^F	6.84E-02 ^F	-	1.10E-01 ^F	6.77E-02 ^F	-
Biphenyl	ng/m³	-	-	3.58E+00	5.58E-01	-	6.22E+00	5.03E-01	-
Chrysene	ng/m³	-	-	1.10E-01 ^F	6.84E-02 ^F	-	1.10E-01 ^F	6.77E-02 ^F	-
Dibenz(a,h)anthracene ^D	ng/m³	-	-	1.10E-01 ^F	6.84E-02 ^F	-	1.10E-01 ^F	6.77E-02 ^F	-
Dibenzo(a,c) anthracene + Picene ^D	ng/m³	-	-	2.13E-01 ^F	1.37E-01 ^F	-	2.10E-01 ^F	1.35E-01 ^F	-
Fluoranthene	ng/m³	-	-	8.16E-01	9.96E-02 ^F	-	2.55E+00	1.05E-01 ^F	-

Project No.: 160950528

Summary of Ambient Measurements February 9, 2017

Table 4-4 Summary of Measured Ambient PAH Concentrations

			HHRA	Courtice WP	CP (Predomin	ately Upwind)	Rundle Roc	ıd (Predomina	ely Downwind)
Contaminant	Units	MOECC Standards	Health Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
Indeno (1,2,3-cd)pyrene	ng/m³	-	-	1.10E-01 ^F	6.84E-02 ^F	-	1.10E-01 ^F	6.77E-02 ^F	-
Naphthalene	ng/m³	22,500	22,500	4.34E+01	6.83E+00	0	6.35E+01	5.48E+00	0
o-Terphenyl	ng/m³	-	-	2.20E-01 F	1.37E-01 ^F	-	2.19E-01 ^F	1.35E-01 ^F	-
Perylene	ng/m³	-	-	2.20E-01 F	1.37E-01 ^F	-	2.19E-01 ^F	1.35E-01 ^F	-
Phenanthrene	ng/m³	-	-	3.75E+00	7.17E-01	-	1.73E+01	6.71E-01	-
Pyrene	ng/m³	-	-	4.53E-01	9.86E-02 ^F	-	1.09E+00	1.05E-01 ^F	-
Tetralin	ng/m³	-	-	3.83E+00	6.31E-01	-	4.37E+00	6.99E-01	-
Total PAH ^E	ng/m³	-	-	8.09E+01	1.51E+01	-	1.29E+02	1.24E+01	-

Notes:

- A. Ontario Ambient Air Quality Criteria. The standard for benzo(a)pyrene (B(a)P) is for B(a)P as a surrogate for PAHs.
- B. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds.
- C. O. Reg. 419/05 24 Hour Guideline.
- D. Based on laboratory analyses, dibenzo(a,c)anthracene co-elutes with dibenz(a,h)anthracene. Picene elutes after dibenz(a,h)anthracene.
- E. The reported total PAH is the sum of all analyzed PAH species.
- F. Measured concentration was less than the laboratory method detection limit.

Stantec

Summary of Ambient Measurements February 9, 2017

Table 4-5 Source Contribution Analysis – Quarter 4 2016 B(a)P Exceedances

Date	Station	% above the MOECC B(a)P Criterion	Wind Direction (blowing from)	Potential Source Contributions
8-Nov-16	Courtice WPCP	107%	Northwest	Highway 401, local roads and the CN railroad are located northwest of the Courtice WPCP Station. Potential sources could be vehicle or locomotive exhaust emissions.
	Rundle Road	250%	Northwest	Land use in this direction is mainly agricultural with some residences. Highway 418 construction activities were also occurring upwind of the Rundle Road Station during this period. Potential sources could be agricultural activities, a residence with a poorly controlled combustion source operating, construction vehicle exhaust, or land clearing/soil movement associated with the construction activities.

Project No.: 160950528

Summary of Ambient Measurements February 9, 2017

4.5 AMBIENT DIOXINS AND FURANS CONCENTRATIONS

A summary of the maximum and minimum ambient dioxins and furans concentrations (for a daily averaging period) are presented in **Table 4-6**. In this summary, both individual dioxins and furans concentrations (pg/m³) as well as the total toxic equivalency concentration (TEQ) are reported. A detailed summary of the concentrations measured for each sample is presented in **Appendix I**.

The maximum measured toxic equivalent dioxins and furans concentrations at both stations were below the applicable 24-hour AAQC of 0.1 pg TEQ/m³ (as shown in **Table 4-6**).

Summary of Ambient Measurements February 9, 2017

Table 4-6 Summary of Measured Ambient Dioxins and Furans Concentrations

Comb	11,21,	MOECC	HHRA Health	Courtic	e WPCP (Predom	inately Upwind)	Rundle	Road (Predomine	ately Downwind)
Contaminant	Units	Standards	Based Criteria	Maximum	Minimum	No. of Exceedances	Maximum	Minimum	No. of Exceedances
2,3,7,8-Tetra CDD *	pg/m³			5.31E-03 A	4.25E-03 A		5.85E-03 A	3.97E-03 A	
1,2,3,7,8-Penta CDD	pg/m³			6.47E-03 A	3.29E-03 A		1.29E-02	4.10E-03 A	
1,2,3,4,7,8-Hexa CDD	pg/m³			5.39E-03 A	3.77E-03 A		5.06E-03 A	4.38E-03 A	
1,2,3,6,7,8-Hexa CDD	pg/m³			1.05E-02	4.25E-03 A		1.08E-02	4.52E-03 A	
1,2,3,7,8,9-Hexa CDD	pg/m³			1.89E-02	3.81E-03 A		1.87E-02	4.61E-03 A	
1,2,3,4,6,7,8-Hepta CDD	pg/m³			1.59E-01	1.38E-02		1.31E-01	2.08E-02	
Octa CDD	pg/m³			5.33E-01	3.80E-02		5.19E-01	1.38E-01	
Total Tetra CDD	pg/m³			1.65E-02 A	5.31E-03 A		1.51E-02 A	3.97E-03 A	
Total Penta CDD	pg/m³			1.30E-02 A	5.03E-03 A		1.29E-02	4.75E-03 A	
Total Hexa CDD	pg/m³			1.32E-01	9.67E-03		5.72E-02	1.39E-02 A	
Total Hepta CDD	pg/m³			3.58E-01	2.71E-02		2.98E-01	4.44E-02	
2,3,7,8-Tetra CDF **	pg/m³			1.94E-02	3.91E-03 A		6.72E-03 A	4.25E-03 A	
1,2,3,7,8-Penta CDF	pg/m³	-	_	5.39E-03 A	4.19E-03 A	N/A	6.70E-03 A	3.83E-03 A	N/A
2,3,4,7,8-Penta CDF	pg/m³			5.39E-03 A	4.33E-03 A	-	6.70E-03 A	3.97E-03 A	
1,2,3,4,7,8-Hexa CDF	pg/m³			1.97E-02	2.89E-03 A	-	1.34E-02	3.28E-03 A	
1,2,3,6,7,8-Hexa CDF	pg/m³			1.37E-02	2.76E-03 A	-	4.87E-03 A	3.28E-03 A	
2,3,4,6,7,8-Hexa CDF	pg/m³			5.79E-03 A	3.02E-03 A	-	5.40E-03 A	3.56E-03 A	
1,2,3,7,8,9-Hexa CDF	pg/m³			5.12E-03 A	3.16E-03 A	-	5.67E-03 A	3.83E-03 A	
1,2,3,4,6,7,8-Hepta CDF	pg/m³			4.09E-02	4.25E-03 A		3.97E-02	4.05E-03 A	
1,2,3,4,7,8,9-Hepta CDF	pg/m³			6.42E-03 A	4.54E-03 A	-	5.89E-03 A	3.95E-03 A	
Octa CDF	pg/m³			2.75E-02	4.25E-03 A	-	3.12E-02	8.33E-03 A	
Total Tetra CDF	pg/m³			7.70E-02	3.91E-03 A	1	2.87E-02	4.33E-03 A	1
Total Penta CDF	pg/m³			5.50E-02	4.65E-03 A	1	2.11E-02	4.89E-03 A	1
Total Hexa CDF	pg/m³			5.68E-02	2.89E-03 A		2.52E-02	3.42E-03 A	1
Total Hepta CDF	pg/m³			4.09E-02	4.65E-03 A		5.45E-02	4.33E-03 A	1
TOTAL TOXIC EQUIVALENCY B	pg TEQ/m³	0.1 1 ^C	-	0.02	0.01	0	0.03	0.01	0

Notes:

- A. Measured concentration was less than the laboratory method detection limit.
- B. Total Toxicity Equivalent (TEQ) concentration contributed by all dioxins, furans and dioxin-like PCBs calculated as per O. Reg. 419/05 methodology using corresponding WHO₂₀₀₅ toxic equivalency factors (TEFs) and a value of half the minimum detection limit (MDL) substituted for concentrations less than the MDL.
- C. O. Reg. 419/05 Schedule 6 Upper Risk Thresholds.

^{*} CDD - Chloro Dibenzo-p-Dioxin, ** CDF - Chloro Dibenzo-p-Furan.

Project No.: 160950528

Conclusions February 9, 2017

5.0 CONCLUSIONS

This quarterly report provides a summary of the ambient air quality data collected at the three monitoring stations located predominantly upwind and downwind in the vicinity of the DYEC for the period October to December 2016.

The following observations and conclusions were made from a review of the measured ambient air quality monitoring data:

- 1. Measured concentrations of NO₂, SO₂ and PM_{2.5} were below the applicable O. Reg. 419/05 Standards or human health risk assessment (HHRA) health-based criteria presented in **Table 2-2** of this report.
- 2. Since the Canadian Ambient Air Quality Standard (CAAQS) for PM_{2.5} is based on a 98th percentile level over 3 years, whereas the PM_{2.5} measurement period at both stations for this quarterly report was three months, there is insufficient data collected to determine with any certainty if exceedances of the CAAQS would occur. Therefore, no comparison of the measured PM_{2.5} data during this quarter to the CAAQS was conducted for this report, as it would not be scientifically accurate or representative.
- 3. The maximum measured concentrations of TSP and all metals with MOECC air quality Standards were well below their applicable Standard (as presented in **Table 2-3** in this report).
- 4. The maximum measured concentrations of all PAHs with MOECC air quality Standards were well below their applicable criteria shown in **Table 2-4**, with the exception of the 24-hour benzo(a)pyrene (B(a)P) concentration in two samples measured at the Courtice and Rundle Road Stations which exceeded the applicable Ontario Ambient Air Quality Criteria (AAQC) by 107% and 250%, respectively. The current Ontario 24-hour B(a)P AAQC was introduced in 2011 and levels above this AAQC are commonly measured throughout Ontario. The measurements were however, well below the MOECC Schedule 6 Upper Risk Threshold, the MOECC O. Reg. 419/05 24-hour average guideline, and the HHRA health based criterion.
- 5. The maximum measured toxic equivalent dioxin and furan concentration was below the applicable Standard presented in **Table 2-4**

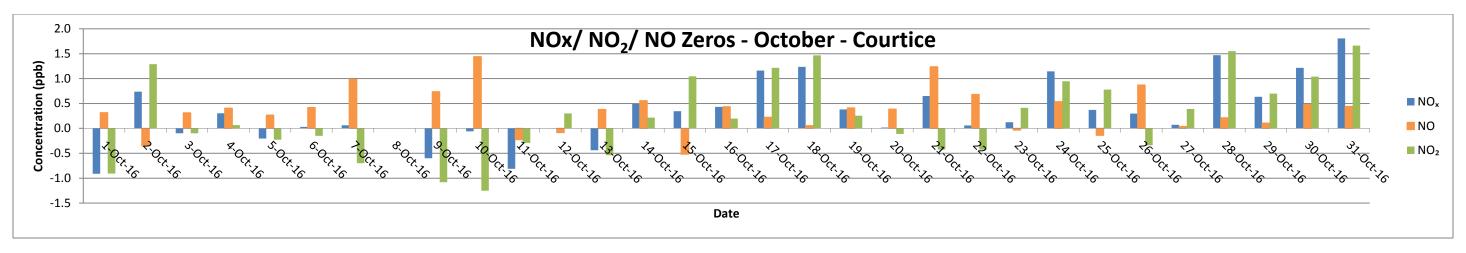
In summary, the measured concentrations of the air contaminants monitored were below their applicable MOECC Standards during the monitoring period between October to December 2016, with the exception of benzo(a)pyrene. Furthermore, all measured levels of the monitored contaminants were below their applicable HHRA health-based criteria.

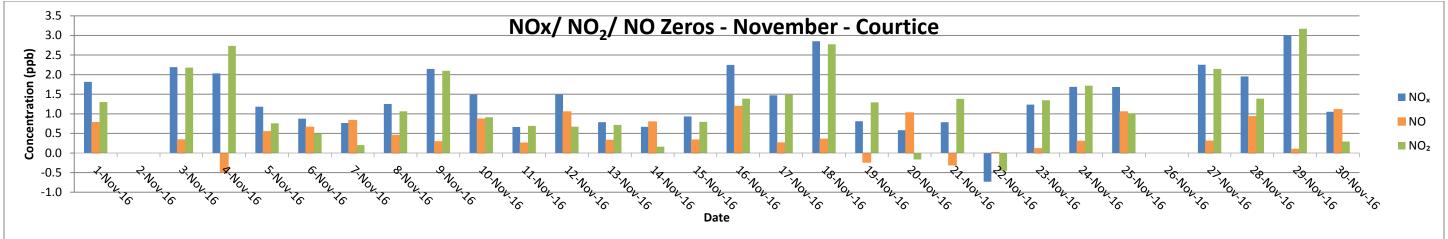
References February 9, 2017

6.0 REFERENCES

- Canadian Council of Ministers of the Environment (CCME), (2007). Guidance Document on Achievement Determination. Canada-Wide Standards for Particulate Matter and Ozone. Revised (PN1391)(978-1-896997-74-2 PDF).
- Canadian Council of Ministers of the Environment (CCME), (2012). Guidance Document on Achievement Determination. Canadian Ambient Air Quality Standards for Fine Particulate Matter and Ozone (PN 1483)(978-1-896997-91-9 PDF).
- Environment Canada, Environment Protection Service, Environmental Technology Advancement Directorate, Pollution Measurement Division, Environmental Technology Centre. (Originally published in 1995). National Air Pollution Surveillance Network Quality Assurance and Quality Control Guidelines (AAQD 2004-1), (Originally published in December 1995 as PMD 95-8
- Jacques Whitford, (2009). Final Environmental Assessment, December 4, 2009.
- Ontario Minister of the Environment and Climate Change(MOECC), (2010). Environmental Assessment Act, Section 9. Notice of Approval to Proceed with the Undertaking. Re: The Amended Environmental Assessment for Durham and York Residual Waste Study (EA File No: 04-EA-02-08).
- Ontario Ministry of the Environment and Climate Change (MOECC), (2012a). Standards

 Development Branch, Ontario's Ambient Air Quality Criteria, April 2012. (PIBs 6570e01).
- Ontario Ministry of the Environment and Climate Change (MOECC), (2012b). Standards Development Branch, Summary of Standards and Guidelines to support Ontario Regulation 419/05 Air Pollution Local Air Quality (including Schedule 6 of O. Reg 419/05 on Upper Risk Thresholds), April 2012 (PIBs 6569e01).
- Stantec Consulting Limited, (2009). Final Environmental Assessment, Appendix C12: Site Specific Human Health and Ecological Risk Assessment Technical Study Report, December 4, 2009.
- Stantec Consulting Limited, (2012). Ambient Air Quality Monitoring Plan Durham York Residual Waste Study, May 8, 2012.




Appendix A SO2 and NOx Instrument Daily Internal Zero Calibration Summaries February 9, 2017

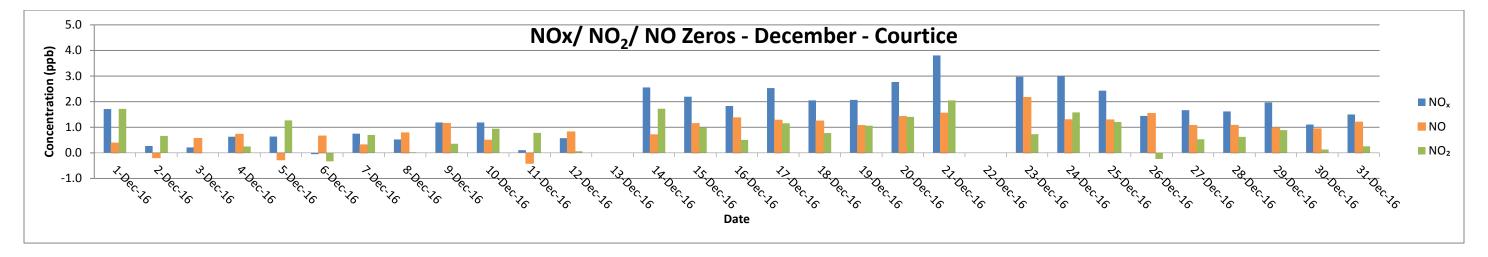
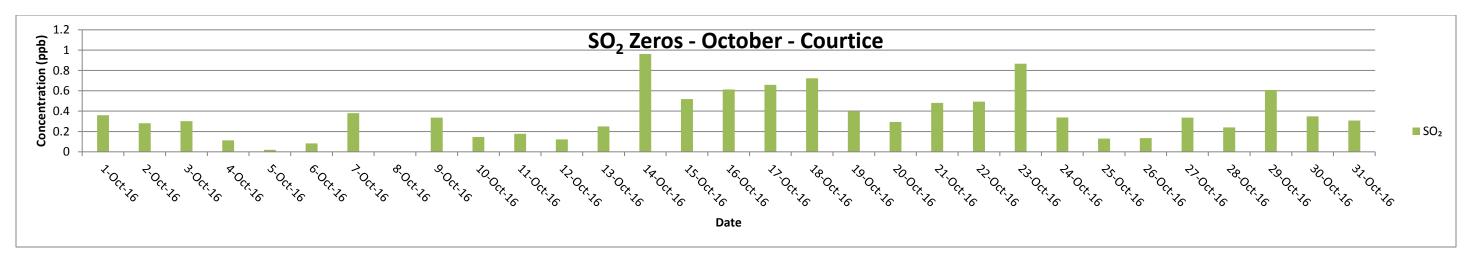
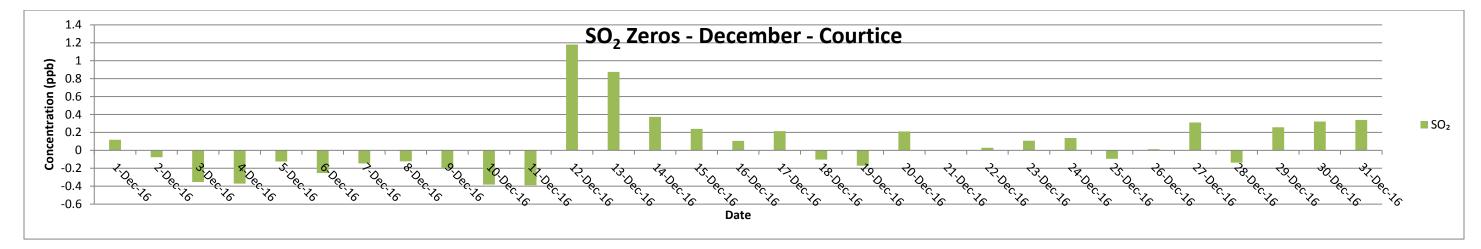

Appendix A SO₂ AND NO_X INSTRUMENT DAILY INTERNAL ZERO CALIBRATION SUMMARIES

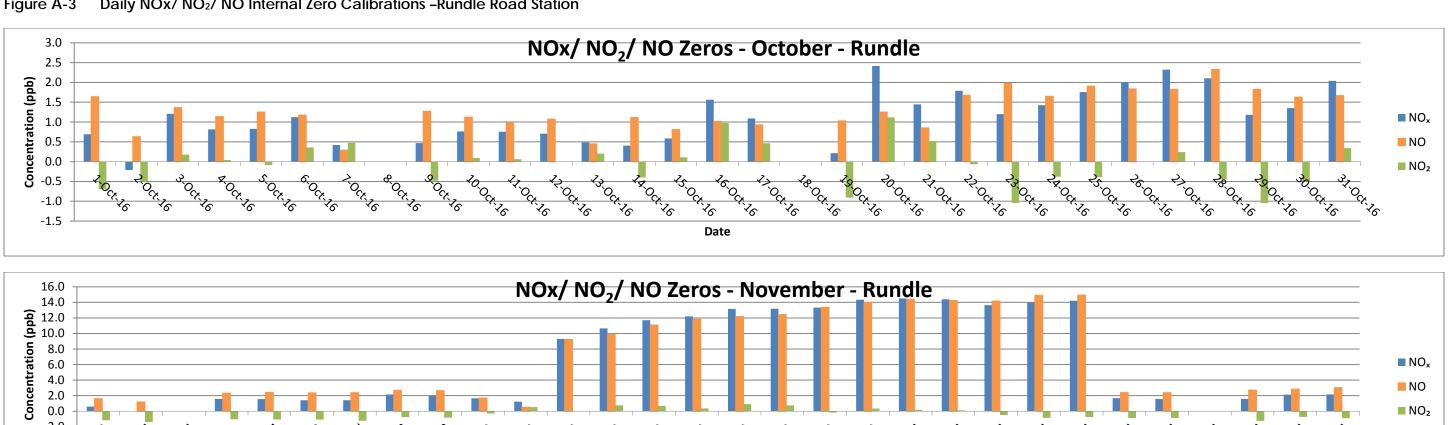
Figure A-1 Daily NOx/NO2/NO Internal Zero Calibrations – Courtice WPCP Station

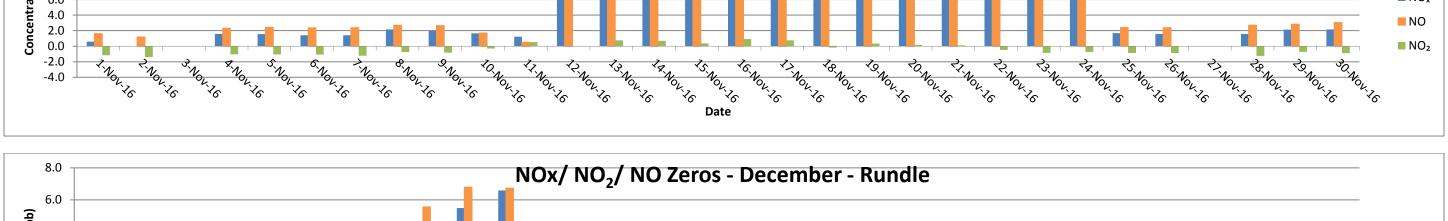


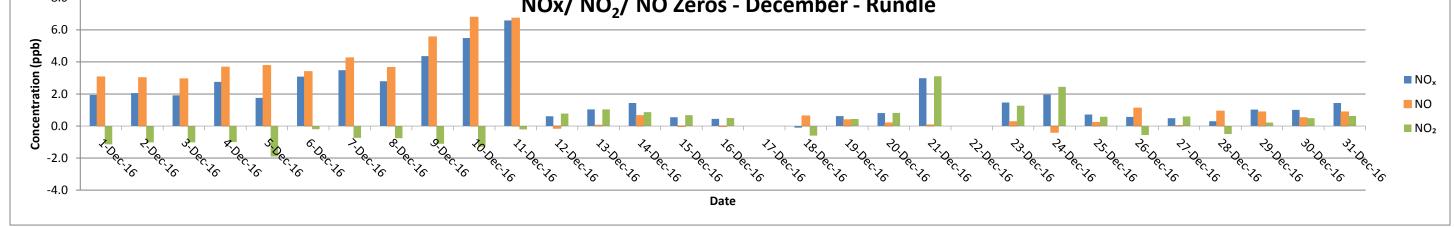

Notes:

- -Auto-calibrations occur every 25 hours
- -13-Dec-16 automatic zero check was skipped since the NOx monitor was removed for annual maintenance on 13-Dec-16 before the automatic internal zero calibration occurred. A spare monitor was installed on the same day this monitor's first automatic internal zero calibration was on 14-Dec-16.

Figure A-2 Daily SO₂ Internal Zero Calibrations – Courtice WPCP Station

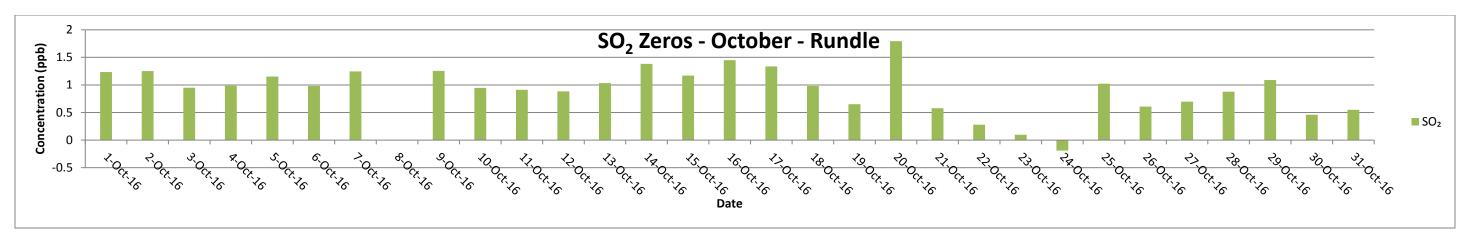


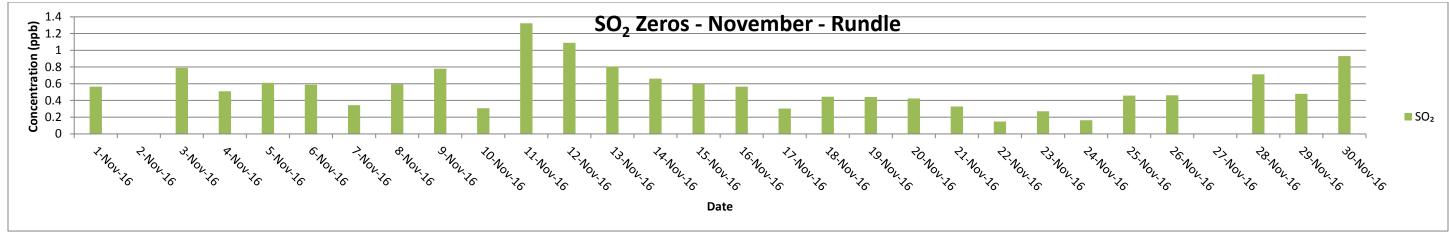


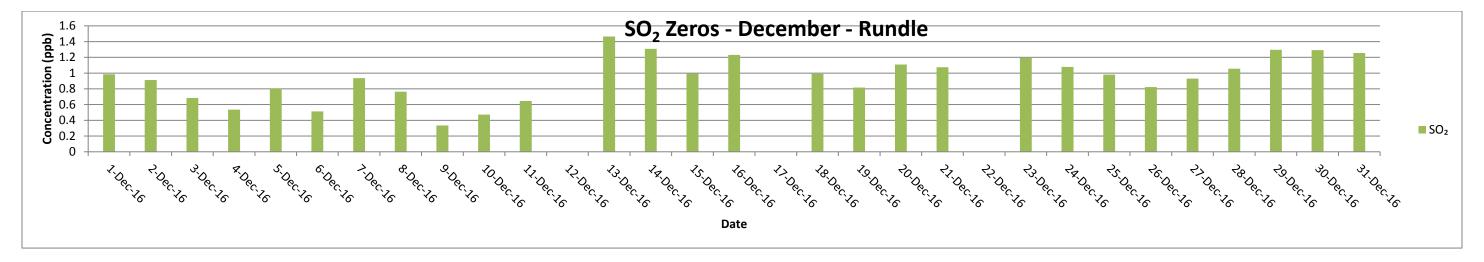


Note: Auto-calibrations occur every 25 hours.

Figure A-3 Daily NOx/NO₂/NO Internal Zero Calibrations -Rundle Road Station






Notes:

- Auto-calibrations occur every 25 hours
- Automatic internal zero calibrations from 12-Nov-16 to 24-Nov-16 were greater than 5 ppb due to a blocked orifice in the unit's auto-cal system. Valley Environmental Services replaced the critical flow orifice on 25-Nov-16
- Automatic internal zero calibrations from 9-Dec-16 to 11-Dec-16 were greater than 5 ppb due to residual NO₂ in the unit's auto-cal system from the previous orifice blockage. The unit's auto-cal system was purged on 12-Dec-16.

Figure A-4 Daily SO₂ Internal Zero Calibrations –Rundle Road Station

Notes:

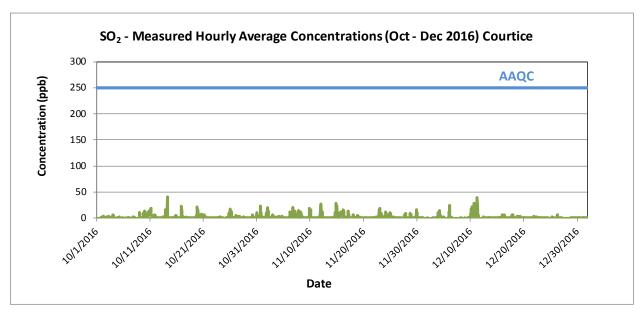
- Auto-calibrations occur every 25 hours
- Automatic internal zero calibration on 12-Dec-16 missed due to monthly calibration
- Automatic internal zero calibration on 17-Dec-16 missed due to a power outage

Appendix B SO2 Data Summaries and Time History Plots February 8, 2017

Appendix B SO₂ DATA SUMMARIES AND TIME HISTORY PLOTS

											Od	6O ₂ - CC tober ob)	URTICE	2016																
	Hour																													
Day		0.0	0.1	0.0	0.0	0.0	0.0	0.0	700 0.0	0.0	900 0.0	0.0	0.1	0.0	0.1	0.1	0.0	1600 0.1	0.0	1800 0.3	1900 0.1	0.0	2100 0.2	0.6	0.1	Count 24	Maximum 0.6	Minimum 0.0	Average 0.1	Hrs>250 Days>100
2		0.6	1.0	0.6	0.6	2.5	2.3	3.6	3.1	1.0	0.8	0.7	0.5	0.2	0.3	0.3	0.3	0.3	0.3	0.3	1.1	1.7	0.7	1.2	0.6	24	3.6	0.2	1.0	0 0
3		0.4	1.7	2.0	1.7	0.8	1.1	4.0	2.9	2.9	2.8	0.8	0.5	0.3	0.3	0.3	0.1	0.1	0.1	0.1	1.8	1.9	0.6	0.3	0.1	24	4.0	0.1	1.1	0 0
4		0.1	0.1	1.1	7.0	4.4	5.4	5.3	1.7	0.9	0.5	0.2	0.2	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.0	0.1	0.3	0.1	0.1	24	7.0	0.0	1.2	0 0
5		0.1	0.0	0.1	0.0	0.0	0.0	0.6	2.6	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.4	0.3	0.1	24	2.6	0.0	0.2	0 0
6	i	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.1	0.2	0.2	0.3	0.1	0.1	0.0	0.1	0.1	0.1	0.4	0.2	0.5	24	0.5	0.0	0.1	0 0
7		0.3	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.2	0.1	0.0	0.2	0.9	2.1	1.1	1.5	24	2.1	0.0	0.3	0 0
8		2.5 0.0	0.6	10.4	0.3 1.8	0.3 1.0	0.3 0.1	0.2 0.5	0.1 0.8	0.0 1.0	0.1 0.5	0.1 0.5	0.0 0.4	0.1	0.1 0.0	0.0 0.2	0.0	0.1	0.0 0.1	0.0 1.8	0.0 8.9	0.0 0.5	0.0 1.0	0.0	0.0	24 24	2.5 10.4	0.0	0.2 1.3	0 0
10		7.9	13.7	7.4	12.1	6.1	5.6	4.7	5.3	6.8	2.7	0.7	0.0	0.0	0.0	0.2	0.0	0.0	0.0	8.9	13.0	9.1	8.1	6.9	6.9	24	13.7	0.0	5.2	0 0
11		7.6	10.2	16.3	13.8	15.5	18.9	9.6	8.4	4.9	0.6	0.3	0.2	0.0	0.1	0.0	0.0	0.0	0.1	2.7	2.5	4.9	2.3	1.6	7.1	24	18.9	0.0	5.3	0 0
12		4.9	0.6	0.5	0.3	0.5	0.5	0.4	0.5	0.6	0.6	0.5	0.6	0.5	0.5	0.3	0.4	0.2	0.4	0.3	0.3	0.3	0.3	0.2	0.3	24	4.9	0.2	0.6	0 0
13		0.5	0.4	0.3	0.2	0.1	0.2	0.1	С	С	С	2.1	1.9	1.7	1.5	1.7	1.5	1.2	1.0	0.8	1.4	1.8	6.0	15.4	6.6	21	15.4	0.1	2.2	0 0
14		5.1	2.1	6.9	5.4	2.7	5.5	8.0	40.6	13.7	1.5	1.2	1.0	0.8	0.8	0.7	0.6	0.6	0.5	0.7	1.0	0.8	0.7	1.1	0.6	24	40.6	0.5	4.3	0 0
15		0.6	0.6	0.5	0.6	0.5	0.6	0.4	0.0	0.5	0.5	0.6	0.6	0.7	1.0	1.1	0.9	0.6	0.6	0.8	0.6	1.9	5.3	4.5	1.3	24	5.3	0.0	1.0	0 0
17	,	1.0 10.6	0.8 6.7	0.7 3.8	0.7 3.3	0.6 1.5	0.8 1.2	0.7 1.2	0.6 1.7	2.2	0.6 1.3	0.7 0.9	0.6 0.8	0.6 0.8	0.6 0.7	0.5 0.6	0.6	0.5 1.3	0.5 1.1	0.5 0.9	0.6 2.6	0.6 1.1	4.5 0.8	22.7 0.7	13.9 0.7	24 24	22.7 10.6	0.5 0.6	2.3	0 0
18		0.8	0.7	0.9	0.8	0.8	0.7	0.6	0.7	0.6	0.6	0.9	0.8	0.8	0.7	0.7	0.7	0.8	0.7	0.5	0.6	0.6	0.5	0.4	0.7	24	0.9	0.3	0.7	0 0
19		0.4	0.4	1.1	0.4	0.4	0.9	0.9	1.5	0.6	0.5	0.5	0.6	0.6	0.6	0.7	0.8	0.6	0.3	4.4	4.5	16.6	17.3	21.1	12.2	24	21.1	0.3	3.7	0 0
20	1	15.2	13.0	6.4	4.5	3.3	2.2	1.8	1.1	0.8	0.6	1.3	4.2	1.7	1.0	0.8	2.2	5.6	7.1	6.7	4.3	6.0	6.4	5.1	4.5	24	15.2	0.6	4.4	0 0
21		5.0	1.8	1.8	4.5	5.9	5.5	4.5	2.5	1.4	1.1	1.3	2.1	1.2	1.0	0.7	0.6	0.5	0.5	0.5	0.3	0.3	0.3	0.7	0.7	24	5.9	0.3	1.9	0 0
22		0.5	0.4	0.4	0.4	0.3	0.3	0.4	0.4	0.4	0.5	0.4	0.3	0.3	0.3	0.4	0.3	0.3	0.5	0.8	1.2	0.5	0.3	0.4	0.5	24	1.2	0.3	0.4	0 0
23		0.6	0.5	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.5	0.5	24	0.6	0.3	0.4	0 0
24		0.4	2.2 0.1	2.1 0.1	1.2 0.1	1.6 0.1	0.6 0.1	0.6 0.2	0.6 0.8	0.7	0.9 0.3	0.6	0.3 0.3	0.3 0.4	0.3 0.4	0.3 0.4	0.2	0.3 0.7	0.2 1.6	0.2 1.0	0.1 2.2	0.1 9.5	0.1 5.5	0.1 10.1	0.1 8.9	24 24	2.2 10.1	0.1 0.1	0.6 1.8	0 0
26		9.4	16.3	17.9	4.7	13.0	5.6	5.0	11.5	5.4	2.1	1.7	0.8	0.4	0.4	0.4	0.2	0.7	0.1	0.4	0.9	0.2	0.3	0.3	0.3	24	17.9	0.1	4.1	0 0
27		0.2	0.1	1.1	4.7	0.4	4.3	0.6	1.9	1.8	0.5	0.3	0.3	0.5	0.4	1.0	3.3	3.3	2.8	3.1	1.2	0.5	0.3	0.3	0.3	24	4.7	0.1	1.4	0 0
28		0.3	0.3	0.3	0.1	0.1	0.2	0.1	0.1	0.7	0.8	1.2	1.8	2.1	2.6	1.7	1.6	1.6	1.3	1.2	1.2	0.9	0.6	0.5	0.6	24	2.6	0.1	0.9	0 0
29	1	0.6	0.5	0.4	0.5	0.5	0.7	1.1	1.2	1.3	1.0	0.8	0.8	0.8	0.8	0.6	0.6	0.6	0.4	0.4	0.3	0.3	0.6	0.3	0.3	24	1.3	0.3	0.6	0 0
30	1	1.5	0.5	0.4	0.4	5.9	3.3	1.5	0.6	0.4	0.3	0.3	0.4	0.7	0.4	0.4	0.4	0.5	0.5	1.0	1.0	0.7	0.3	0.4	3.9	24	5.9	0.3	1.1	0 0
31		8.9	8.8 31	10.8	3.1	1.4	1.2	0.6 31	0.6 30	0.4	0.4 30	1.0 31	1.0	0.6	0.6 31	0.8	0.1	0.2	22.6	15.7	8.7 31	1.2	1.0	1.1 31	0.7	741	22.6	0.1	3.8	0 0
Count Maximum		31 15.2	31 16.3	31 17.9	31 13.8	31 15.5	31 18.9	31 9.6	40.6	13.7	30 2.8	31 2.1	31 4.2	31 2.1	31 2.6	31 1.7	31 3.3	31 5.6	31 22.6	31 15.7	31 13.0	31 16.6	31 17.3	31 22.7	13.9	/41 24				
Minimum		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24				
Average		2.8	2.7	3.1	2.4	2.3	2.2	1.9	3.1	1.7	0.8	0.7	0.7	0.5	0.5	0.5	0.6	0.7	1.4	1.8	2.0	2.0	2.2	3.2	2.4					
Percentiles	s		10		20		30		40		50		60		70		80		90		95		99		100			Maxin	ım Hourly num Daily	40.6 5.3
Data			0.1		0.1		0.3		0.4		0.6		0.7		1.0		1.8		5.1		8.8		16.5		40.6			Monthly	y Average	1.7
Notes		C - (Calibration	/ Span Cy	cle N	A - No Data	Available	T-	Test	F	A- MOE Audit	М	- Equipmer	nt Malfunct	ion / Down	n R	- Rate of Ch	ange									-			

										No	SO ₂ - Co vember ob)	OURTICE	2016																
Day	lour 0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count M	aximum M	linimum	Average	Hrs>250 Days>100
1	0.4	1.0	2.4	1.0	0.5	0.5	0.5	0.3	0.4	0.5	0.4	0.4	0.5	0.4	0.6	1.0	0.6	1.1	5.3	8.0	8.6	9.4	10.4	5.9	24	10.4	0.3	2.5	0
2	20.8	6.9	13.9	8.9	12.7	10.9	5.7	2.7	2.0	2.4	2.1	1.4	0.9	0.8	0.6	0.8	0.8	0.9	0.7	0.7	1.3	1.6	1.1	6.7	24	20.8	0.6	4.5	0 (
3	4.4	5.6	4.2	3.8	3.8	2.5	2.6	2.4	1.1	0.9	0.8	1.6	1.5	0.8	0.7	1.0	0.9	1.5	1.3	1.8	1.8	0.7	0.5	0.5	24	5.6	0.5	1.9	0 (
4	2.0	0.7	0.9	0.7	0.5	0.7	3.4	1.2	0.9	0.6	0.4	0.7	0.7	0.8	0.6	0.4	0.6	0.5	3.7	0.6	0.4	0.5	0.9	0.4	24	3.7	0.4	0.9	0 (
5	0.3	0.9	0.8	0.6	0.5	0.5	0.4	0.4	0.5	0.5	0.6	0.5	0.3	0.5	0.5	0.3	0.4	0.3	0.5	0.3	0.3	0.3	0.3	0.3	24	0.9	0.3	0.4	0 (
6	0.3	0.4	0.3	1.1	5.6	11.3	5.8	5.8	3.2	3.1	1.1	1.4	1.3	0.8	0.9	0.7	0.4	1.0	20.5	6.7	6.7	4.3	8.1	7.3	24	20.5	0.3	4.1	0 (
7	7.3	6.0	10.2	6.5	6.4	13.3	3.3	3.7	4.5	1.7	1.0	0.9	0.8	0.7	0.5	0.5	0.5	1.8	3.2	14.4	13.1	7.1	6.1	7.7	24	14.4	0.5	5.1	0 (
8	5.0	5.2	9.4	6.6	4.3	11.3	6.3	6.4	7.6	5.5	1.9	1.4	1.4	1.5	1.7	2.0	1.3	0.9	0.8	0.8	0.8	0.8	0.7	0.8	24	11.3	0.7	3.5	0 (
9	0.6	0.6	0.6	0.5	1.0	0.7	0.8	0.9	0.8	0.7	0.8	0.5	0.5	0.6	0.4	0.3	0.3	0.3	0.2	1.6	1.1	5.2	19.3	14.4	24	19.3	0.2	2.2	0 (
10	3.7	11.5	15.7	4.4	1.3	1.2	1.2	1.5	1.6	1.2	1.2	1.2	1.4	1.3	1.2	0.8	0.8	0.8	0.9	0.8	0.9	0.8	0.8	0.8	24	15.7	0.8	2.4	0 0
11	0.7 11.6	0.7 12.0	0.7 26.8	0.6 4.5	0.5 6.9	0.4 3.3	0.4 1.4	0.3 11.9	0.3 1.2	0.6 1.0	0.9 0.5	1.2 0.3	1.0 0.6	0.6 0.8	1.4 0.6	0.4	0.3 0.6	0.2 0.4	1.9 0.5	2.0 0.8	4.7 0.6	0.3 0.8	6.3 0.7	25.7 0.7	24 24	25.7 26.8	0.2	2.2 3.7	0
12	0.8	0.8	0.8	0.6	0.6	0.6	0.7	0.7	0.8	0.8	0.3	0.3	1.1	0.8	0.8	0.8	0.8	0.4	0.7	1.1	0.8	0.6	0.7	1.1	24	1.1	0.6	0.8	0
14	0.8	0.8	0.6	0.6	0.6	0.6	0.7	1.1	0.8	1.1	1.1	1.9	1.9	2.2	1.7	1.9	1.1	10.7	2.8	1.1	1.0	2.4	28.1	16.6	24	28.1	0.6	3.4	0
15	14.8	23.9	7.3	10.8	5.8	9.6	9.6	6.9	4.2	2.7	4.0	1.4	1.2	1.1	1.1	1.1	2.0	11.2	7.0	12.2	6.3	4.7	5.4	7.8	24	23.9	1.1	6.8	0
16	9.5	8.7	4.6	9.2	7.0	4.7	15.4	13.1	3.4	3.3	2.6	2.5	2.4	1.7	1.1	1.2	0.9	0.9	0.8	0.6	0.6	0.6	0.6	1.7	24	15.4	0.6	4.0	0
17	2.3	0.7	5.2	11.1	13.2	3.1	6.7	3.4	1.9	1.4	1.1	1.1	1.1	1.1	1.1	1.0	0.9	0.8	0.8	0.8	0.6	0.6	0.6	0.6	24	13.2	0.6	2.5	0 /
18	0.6	0.6	5.9	1.6	2.0	0.8	0.9	2.7	2.3	1.1	0.9	1.0	0.9	0.8	0.9	0.9	0.9	1.2	1.0	1.0	1.7	3.3	4.4	3.7	24	5.9	0.6	1.7	0 (
19	1.8	1.5	1.0	1.0	1.5	2.8	2.5	1.1	1.1	1.0	0.9	0.6	0.7	0.7	0.6	0.6	0.6	0.9	0.9	0.6	0.6	0.5	0.5	0.5	24	2.8	0.5	1.0	0 (
20	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.4	0.4	0.6	0.6	1.0	1.3	1.1	1.2	1.2	1.1	1.2	0.9	1.0	0.6	0.8	24	1.3	0.4	0.8	0 (
21	1.2	1.4	0.9	0.6	0.5	0.5	0.4	0.4	0.4	0.3	0.4	0.3	0.3	0.3	0.4	0.4	0.4	0.3	0.3	0.3	0.0	0.4	0.3	0.4	24	1.4	0.0	0.5	0 (
22	0.3	0.5	0.5	0.3	0.5	0.7	1.0	0.8	0.9	0.9	1.7	1.2	1.4	0.9	0.4	0.3	0.2	0.3	0.2	0.3	0.2	8.6	7.5	5.3	24	8.6	0.2	1.5	0 (
23	15.6	18.9	17.4	4.6	6.5	9.5	7.8	8.5	1.2	1.3	4.6	3.5	0.6	0.6	0.6	1.5	0.7	0.7	1.8	1.3	1.2	0.7	0.5	0.5	24	18.9	0.5	4.6	0 (
24	1.7	3.7	2.8	1.3	3.0	11.3	6.8	1.0	2.0	1.7	2.1	0.9	0.9	0.6	0.6	0.6	1.5	3.9	5.4	4.3	7.3	4.9	4.6	4.5	24	11.3	0.6	3.2	0 (
25	10.7	8.8	1.1	1.0	0.7	1.2	1.1	2.9	C	С	С	C	3.0	1.7	1.5	1.6	1.9	1.3	1.3	1.1	1.0	1.0	0.9	0.9	20	10.7	0.7	2.2	0 (
26	1.0	0.9	0.7	0.6	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.6	0.3	0.3	0.3	0.4	0.3	0.3	0.2	0.2	0.1	0.1	0.1	24	1.0	0.1	0.5	0 (
27	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.6	0.7	0.1	0.1	0.1	0.1	0.0	0.5	4.5	1.8	4.7	8.4	5.0	8.7	3.3	0.6	24	8.7	0.0	1.7	0 (
28	0.3 0.9	0.2 1.6	0.3 0.9	0.1	1.3 0.3	1.1 0.4	0.6 0.4	1.2 0.4	0.9 0.4	0.5 0.3	0.6	0.5 0.3	0.2	0.3 0.3	0.2	0.2	0.3	0.1 0.1	1.5 0.2	9.6 0.1	1.0 0.5	2.7 11.4	7.9 9.3	1.9 15.7	24 24	9.6 15.7	0.1	1.4	0
29	13.9	9.2	2.7	0.0	0.3	0.4	1.1	1.1	0.4	0.4	0.5	0.3	0.5	0.3	1.3	0.1	0.6 0.4	0.1	0.4	0.1	0.5	0.4	0.3	0.1	24	13.9	0.0	1.9 1.6	0
31	13.5	3.2	2.7	0.5	0.7	0.5	1.1	1.1	0.0	0.4	0.0	0.5	0.5	0.5	1.3	0.5	0.4	0.5	0.4	0.4	0.0	J.4	0.5	0.1	24	13.5	0.1	1.0	0
Count	30	30	30	30	30	30	30	30	29	29	29	29	30	30	30	30	30	30	30	30	30	30	30	30	716				
Maximum	20.8	23.9	26.8	11.1	13.2	13.3	15.4	13.1	7.6	5.5	4.6	3.5	3.0	2.2	1.7	2.0	4.5	11.2	20.5	14.4	13.1	11.4	28.1	25.7	24				
Minimum	0.1	0.2	0.1	0.0	0.1	0.1	0.1	0.0	0.3	0.3	0.1	0.1	0.1	0.1	0.0	0.1	0.2	0.1	0.2	0.1	0.0	0.1	0.1	0.1	20				
Average	4.5	4.5	4.6	2.8	3.0	3.5	3.0	2.8	1.6	1.3	1.2	1.0	1.0	0.8	0.8	0.8	0.9	1.6	2.4	2.8	2.3	2.8	4.4	4.5					
Percentiles		10		20		30		40	·	50		60		70		80		90		95		99		100			Maximu	m Hourly	28.1
Data		0.3		0.5		0.6		0.7		0.9		1.1		1.6		3.4		7.1		10.8		18.7		28.1				num Daily y Average	6.8 2.4
Notes	C-	- Calibratio	n / Span Cy	cle N	A - No Data	Available	Т-	Test	A- I	MOE Audit	М	- Equipme	nt Malfunct	tion / Dowr	n R-	- Rate of C	hange												


										De	SO ₂ - Co cember pb)	OURTICE	2016																
Dav	lour 0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Ma	avimum M	linimum	Average	Hrs>250 Days>1
1	0.2	0.1	0.1	0.2	0.1	0.3	0.1	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.1	0.2	0.2	24	0.3	0.0	0.1	0
2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.1	0.0	0.0	0
3	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.1	0.3	0.5	0.2	0.4	0.4	0.5	0.1	0.1	0.0	0.0	2.2	3.6	8.9	24	8.9	0.0	0.7	0
4	3.6	10.8	5.7	9.3	7.8	14.7	11.0	9.7	5.6	0.7	5.4	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.5	0.0	0.0	1.6	24	14.7	0.0	3.6	0
5	2.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	24	2.3	0.0	0.1	0
6	0.3	11.9	8.9	24.4	4.5	1.8	2.3	0.4	0.1	0.7	0.8	2.0	0.3	0.7	1.0	0.1	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	24	24.4	0.0	2.5	0
7	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	24	0.2	0.0	0.0	0
8	0.0	0.0	0.1	0.0	0.1	0.2	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2	24	0.3	0.0	0.0	0
9	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.6	1.0	0.6	0.0	1.0	0.6	0.0	1.1	0.5	1.2	24	1.2	0.0	0.3	0
10	0.6	0.0	6.6	13.1	17.4	15.2	19.5	2.4	21.3	2.8	0.1	0.0	0.0	0.0	0.0	0.0	24.5	27.9	0.5	0.0	0.0	0.0	0.0	0.0	24	27.9	0.0	6.3	0
11	0.0	5.4	4.0	0.7	4.4	20.8	39.3	39.7	21.0	8.5 C	9.8	4.8	0.4	0.1	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.0	0.0	24	39.7	0.0	6.6	U
12	0.0	0.0	0.0	0.0	0.0	0.0	0.2	C 0.7	0.8	1.1	1.4	1.6 1.0	1.5	1.4	1.2	1.1 0.8	0.9	1.1 1.1	1.0 1.0	1.1	0.9	0.8	0.8	0.8	21 23	1.6 1.1	0.0	0.8	0
13	0.8	1.0	0.7 0.9	0.8 0.5	0.8 0.5	0.9 0.5	0.9	0.7	0.5	0.5	A 0.6	0.9	1.1 0.6	0.7 0.6	0.6 0.6	0.6	0.9 0.6	0.5	0.8	1.0 0.8	0.7 0.6	0.7 0.6	0.6 0.7	0.8	23	1.0	0.6	0.8	0
14	0.8	0.7	0.9	0.5	0.5	0.3	0.4	0.6	0.5	0.5	0.6	0.9	0.8	0.8	0.6	0.8	0.8	0.5	0.8	0.8	0.6	0.6	3.1	5.7	24	5.7	0.3	0.6	0
16	6.6	3.2	3.4	4.0	3.2	3.1	2.5	2.6	1.3	1.6	6.8	0.9	0.6	0.3	0.2	0.4	0.5	0.3	0.3	0.7	0.5	0.3	0.3	0.2	24	6.8	0.2	1.8	0
17	0.3	0.8	0.5	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.4	0.5	0.7	0.7	3.4	5.1	6.7	5.3	3.5	5.9	24	6.7	0.3	1.6	0
18	1.0	0.7	0.6	0.6	0.6	0.6	0.5	0.4	0.3	0.2	0.4	0.8	1.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	3.9	3.2	3.9	3.1	24	3.9	0.0	0.9	0
19	0.8	0.0	0.2	0.4	0.7	1.2	2.9	3.3	1.7	1.0	0.3	0.1	0.1	0.0	0.0	0.0	0.1	0.5	0.5	0.4	0.3	0.5	0.5	0.6	24	3.3	0.0	0.7	0
20	0.2	0.5	0.6	0.7	0.4	0.7	0.8	0.4	0.8	0.9	0.6	0.3	0.3	0.3	0.3	0.4	0.4	0.8	0.8	0.8	1.1	0.9	0.9	1.0	24	1.1	0.2	0.6	0
21	1.1	1.1	1.2	1.3	1.2	1.1	0.9	0.9	0.8	0.7	0.7	0.8	0.9	0.8	0.6	0.6	0.6	0.9	0.6	0.9	0.7	0.9	1.3	4.2	24	4.2	0.6	1.0	0
22	2.7	1.4	0.9	0.5	1.2	1.2	1.8	2.1	1.9	1.6	1.4	1.1	0.9	0.8	0.6	0.6	0.4	0.3	0.4	0.6	0.6	0.7	0.3	0.1	24	2.7	0.1	1.0	0
23	0.3	0.3	0.5	0.4	0.4	0.5	0.5	0.8	0.9	1.2	1.1	1.4	0.5	0.5	0.5	0.3	0.7	0.8	0.9	0.6	0.5	0.6	1.3	0.4	24	1.4	0.3	0.7	0
24	0.3	0.3	0.4	0.4	0.6	0.6	0.5	0.6	0.5	0.4	0.5	0.3	0.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	24	0.6	0.1	0.3	0
25	0.1	0.0	0.0	0.1	0.1	0.4	1.3	2.0	1.9	1.4	0.4	0.3	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	24	2.0	0.0	0.3	0
26	0.0	0.0	0.0	0.0	0.2	1.4	3.6	2.8	5.9	0.5	0.3	0.3	0.3	0.3	0.3	0.4	1.1	0.4	0.4	0.4	0.3	0.4	0.3	0.4	24	5.9	0.0	0.8	0
27	0.4	0.4	0.4	0.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	24	0.4	0.1	0.1	0
28	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.0	0.0	0.2	0.6	0.3	0.3	0.1	0.1	24	0.6	0.0	0.1	0
29	0.1	0.2	0.3	0.3	0.3	0.3	0.5	0.4	0.4	0.4	0.7	0.7	0.6	0.5	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	24	0.7	0.1	0.4	0
30	0.3	0.3	0.2	0.3	0.3	0.2	0.2	0.2	0.3	0.7	0.6	0.9	0.8	0.7	0.5	0.4	0.3	0.1	0.1	0.1	0.1	0.1	0.2	0.1	24	0.9	0.1	0.3	0
Count	0.1	0.2	0.2	0.3	0.5	0.5	0.3	0.3	0.3	0.3	0.6	0.6	0.5	0.6	0.6	0.6	0.7	0.6	0.4	0.3	0.3	0.5	0.3	0.2	24 740	0.7	0.1	0.4	U
Count Maximum	31 6.6	31 11.9	31 8.9	31 24.4	31 17.4	31 20.8	31 39.3	30 39.7	21.3	30 8.5	30 9.8	31 4.8	31 1.5	31 1.4	31 1.2	31 1.1	31 24.5	31 27.9	31 3.4	31 5.1	31 6.7	31 5.3	31 3.9	8.9	24				
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24				
Average	0.0	1.3	1.2	1.9	1.5	2.2	2.9	2.4	2.2	0.0	1.1	0.7	0.4	0.3	0.0	0.3	1.1	1.2	0.4	0.5	0.6	0.0	0.7	1.2	21				
Aveluge	0.0	1.5	1.2	1.3	1.5		2.3		LiL	0.5		0.7	0.4	0.5	0.5	0.5		1.2	0.4	0.5	0.0	0.,	0.7						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximu	ım Hourly	39
																											Maxim	num Daily	6
Data		0.0		0.0		0.1		0.2		0.3		0.4		0.6		0.9		1.7		4.5		20.3		39.7			Monthly	y Average	1
Notes	C-	- Calibratio	n / Span Cy	cle N	A - No Data	Available	Т-	Test	Α-	MOE Audit	. M	- Equipme	nt Malfunc	tion / Dowr	n R	- Rate of C	hange							-					-

				SO ₂ - Rundie Road October 2016 (ppb)																										
-	our									(19)	,,																			
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>250	Days>100
1	0.9	0.7	1.1	1.8	2.6	3.1	1.7	0.8	0.7	0.5	0.6	0.4	0.5	0.4	0.3	0.4	0.4	0.4	0.5	0.4	0.3	0.4	0.3	0.2	24	3.1	0.2	0.8	0	0
2	0.1	0.2	0.3	0.3	0.3	0.4	0.2	0.4	0.4	0.2	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.4	0.4	0.5	0.5	0.5	0.4	0.5	24	0.5	0.1	0.4	0	0
3	0.2	0.4	0.5	0.3	0.4	0.4	0.4	0.3	0.4	0.2	0.2	0.4	0.3	0.4	0.3	0.3	0.4	0.3	0.3	0.3	0.4	0.3	0.4	0.3	24	0.5	0.2	0.3	0	0
4	0.2	0.4	0.3	0.3	0.1	0.3	0.3	0.3	0.4	0.3	0.3	0.3	0.2	0.2	0.4	0.4	0.5	0.4	0.3	0.3	0.3	0.5	0.4	0.3	24	0.5	0.1	0.3	0	0
5	0.4	0.4	0.3	0.2	0.4	0.3	0.2	0.4	0.4	0.4	0.3	0.3	0.4	0.4	0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.4	24	0.5	0.2	0.4	0	0
6	0.4	0.3	0.3	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.6	0.9	1.5	1.5	1.0	0.7	0.5	0.4	0.2	0.3	0.4	0.5	0.6	24	1.5	0.2	0.6	0	0
7	0.4	0.4	0.4	0.4	0.4	0.2	0.1	0.4	0.5	0.5	0.5	0.4	0.5	0.6	0.5	0.5	0.6	0.5	0.5	0.5	0.5	0.5	0.6	0.6	24	0.6	0.1	0.5	0	0
8	0.8	0.8	0.7	0.7	0.7	0.7	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.4	0.4	0.3	0.5	0.4	24	0.8	0.3	0.5	0	0
10	0.4	0.4	0.3	0.3	0.2	0.3	0.5	0.6	0.9	0.8	0.5	0.4	0.4	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.2	24 24	0.9	0.1	0.3	- 0	- 0
11	0.1	0.2	0.2	0.1	0.2	0.1	0.1	0.0	0.3	0.1	0.1	0.1	0.1	7.1	1.7	1.1	0.5	0.4	0.2	0.2	0.3	0.2	0.2	0.2	24	7.1	0.0	0.2	0	0
12	0.2	0.3	0.4	0.4	0.4	0.4	0.5	0.6	0.7	0.8	0.8	1.0	0.9	0.9	1.1	2.0	1.2	0.4	0.7	0.6	0.7	0.7	0.7	0.7	24	2.0	0.2	0.7	0	0
13	0.8	0.8	0.7	0.5	0.5	0.6	0.5	0.5	0.5	C	C	C.	1.6	1.6	1.7	1.6	1.4	1.3	1.1	1.0	1.0	1.0	0.9	0.8	21	1.7	0.5	1.0	0	o o
14	0.8	0.7	0.8	0.8	0.7	0.7	0.2	0.7	0.9	0.8	0.7	0.7	0.8	0.7	0.7	0.7	0.7	0.7	0.7	0.9	0.8	0.8	1.1	0.8	24	1.1	0.2	0.7	0	0
15	0.7	0.6	0.6	0.5	0.6	0.5	0.5	0.7	0.7	0.6	0.7	0.7	0.8	1.1	1.2	1.3	1.4	0.9	0.9	0.8	0.7	0.7	0.8	0.7	24	1.4	0.5	0.8	0	0
16	0.8	0.8	0.8	0.7	0.7	0.9	0.8	0.9	0.9	0.8	0.9	0.8	0.9	0.8	0.8	0.8	0.9	0.7	0.7	0.8	0.8	0.8	0.7	0.7	24	0.9	0.7	0.8	0	0
17	0.8	0.7	0.8	0.7	0.7	0.8	0.8	0.8	0.9	0.9	0.8	0.7	0.7	0.7	0.9	1.4	1.0	0.9	0.8	0.8	0.8	0.8	0.8	0.8	24	1.4	0.7	0.8	0	0
18	0.7	0.9	0.8	0.8	0.9	0.7	0.5	0.5	0.6	0.6	0.6	0.4	0.5	0.5	0.4	0.5	0.5	0.5	0.4	0.2	0.2	0.3	0.2	0.2	24	0.9	0.2	0.5	0	0
19	0.2	0.1	0.1	0.2	0.2	0.3	0.4	0.7	0.5	0.1	0.1	0.3	0.3	0.3	0.3	0.4	0.3	0.1	0.0	0.1	0.1	0.1	0.1	0.2	24	0.7	0.0	0.2	0	0
20	0.2	0.3	0.1	0.0	0.1	0.1	0.1	С	С	С	С	С	1.0	0.7	0.6	0.5	0.5	0.4	0.4	0.2	0.3	0.2	0.1	0.1	19	1.0	0.0	0.3	0	0
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24 24	0.0	0.0	0.0	0	0
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.4	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.4	0.0	0.1	0	0
27	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.3	0.0	0.0	0	0
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.5	1.3	1.8	2.0	2.3	2.0	1.4	1.3	0.8	0.5	0.8	0.7	0.5	0.3	0.3	24	2.3	0.0	0.7	0	o o
29	0.4	0.3	0.4	0.3	0.4	0.3	0.8	1.0	1.1	0.9	0.7	0.7	0.7	0.7	0.5	0.5	0.4	0.3	0.3	0.3	0.2	0.3	0.2	0.2	24	1.1	0.2	0.5	0	Ö
30	0.2	0.2	0.2	0.2	0.3	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.3	0.0	0.1	0	0
31	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
Count	31	31	31	31	31	31	31	30	30	29	29	29	31	31	31	31	31	31	31	31	31	31	31	31	736					
Maximum	0.9	0.9	1.1	1.8	2.6	3.1	1.7	1.0	1.1	0.9	1.3	1.8	2.0	7.1	2.0	2.0	1.4	1.3	1.1	1.0	1.0	1.0	1.1	0.8	24					
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19					
Average	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.4	0.4	0.4	0.4	0.4	0.5	0.8	0.6	0.6	0.5	0.4	0.3	0.3	0.3	0.3	0.3	0.3						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly		7.1
Data		0.0		0.0		0.1		0.2		0.3		0.4		0.5		0.7		0.8		1.0		1.8		7.1				mum Daily Ily Average		1.0 0.4
Notes	C	Calibration	n / Span Cycl	e NA	- No Data A	Available	Т-	Test	A-	MOE Audit	М	- Equipmen	t Malfunctio	on / Down	R - F	Rate of Cha	ange													

											SO ₂ - Ru	ındle Road	i																	
										No	vember		2016																	
										(p	pb)																			
Но	ur O	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Augraga	Hrs>250	Day
1	0.0	0.0	0.5	0.3	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.1	0.4	0.5	0.9	0.3	0.2	0.1	0.1	0.0	0.0	0.1	0.0	0.0	24	0.9	0.0	Average 0.2	nis>230	Day
2	0.0	0.0	0.0	0.0	0.1	0.2	0.1	0.1	0.0	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.2	0.0	0.0	o	
3	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.9	1.1	0.3	0.3	0.5	0.3	0.9	1.1	1.2	1.4	0.2	0.0	0.0	24	1.4	0.0	0.4	o	
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.4	0.4	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.4	0.0	0.1	0	
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.1	0.3	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.4	0.0	0.0	0	
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.1	0.0	0.0	0	
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.6	0.6	0.6	1.1	0.9	0.3	0.1	0.1	0.1	0.0	0.0	0.0	0.0	24	1.1	0.0	0.2	0	
9	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.1	0.0	0.0	0	
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.4	0.2	0.4	0.5	0.7	0.9	0.8	0.3	0.2	0.1	0.2	0.1	0.3	0.2	0.3	0.6	24	0.9	0.0	0.3	0	
11	0.4	0.2	0.1	0.1	0.0	0.0	0.0	C	С	7.8	0.5	0.7	0.9	0.9	0.8	0.8	0.8	0.7	0.6	0.6	0.6	0.6	0.5	0.5	22	7.8	0.0	0.8	0	
12	0.7	0.3	0.2	0.3	0.3	0.3	0.1	0.2	0.3	0.6	0.3	0.4	0.4	0.5	0.0	0.2	0.3	0.1	0.2	0.4	0.3	0.4	0.5	0.5	24	0.7	0.0	0.3	0	
13	0.4	0.3	0.4	0.2	0.2	0.1	0.1	0.2	0.3	0.3	0.4	0.5	0.6	0.5	0.6	0.4	0.5	0.3	0.2	0.5	0.4	0.3	0.3	0.4	24	0.6	0.1	0.3	0	
14	0.2	0.3	0.2	0.1	0.1	0.2	0.3	0.4	0.6	0.7	1.1	1.2	1.7	1.8	1.6	1.9	0.5	0.1	0.1	0.1	0.1	0.1	0.0	0.0	24	1.9	0.0	0.6	0	
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.2	0.3	0.4	0.3	0.3	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	24	0.4	0.0	0.1	0	
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.8	1.3	1.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	1.3	0.0	0.2	0	
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.1	0.0	0.0	0	
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.1	0.0	0.0	0	
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.2	0.2	0.3	0.3	0.3	0.2	0.1	0.0	0.0	24	0.3	0.0	0.1	0	
21	0.2	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.4	0.0	0.0	0	
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	1.0	0.7	0.8	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	1.0	0.0	0.1	0	
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	24	0.1	0.0	0.0	0	
26	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.1	0.0	0.0	0	
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.2	0.2	0.1	0.2	0.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.4	0.1	24	0.4	0.0	0.1	0	
29	0.1	0.2	1.6	0.9	0.3	0.1	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.1	0.0	0.1	0.1	0.0	0.1	24	1.6	0.0	0.2	0	
30	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.1	0.3	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.3	0.2	0.3	24	0.3	0.0	0.1	0	
int	30	30	30	30	30	30	30	29	29	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	718				U	
ximum	0.7	0.4	1.6	0.9	0.3	0.3	0.3	0.4	0.6	7.8	1.1	1.3	1.7	1.8	1.6	1.9	0.8	0.9	1.1	1.2	1.4	0.6	0.5	0.6	24					
nimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22					
rage	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.1	0.4	0.2	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1						
contilos		10		20		30		40		50		60		70		80		90		95		99		100			Mavim	ım Hourly		
rcentiles		10		20		30		40		50		60		70		80		90		35		39		100				num Daily		
ta		0.0		0.0		0.0		0.0		0.0		0.0		0.1		0.2		0.4		0.6		1.3		7.8				y Average		

		SO ₂ - Rundle Road December 2016 (ppb)																													
	Hour											pu)																		-	
Day	Houi	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count M	aximum Mi	inimum	Average	Hrs>250	Daves100
Duy	1	0.3	1.1	0.3	0.3	0.0	0.3	0.4	0.4	0.3	0.3	0.4	0.4	0.4	0.3	0.4	0.2	0.4	0.2	0.3	0.3	0.3	0.3	0.4	0.3	24	1.1	0.0	0.3	0	0
		0.4	0.3	0.1	0.2	0.2	0.1	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.4	0.0	0.1	0	0
	3	0.1	0.3	0.4	0.3	0.1	0.1	0.2	0.3	0.5	0.4	0.4	0.9	0.6	0.6	0.8	0.9	0.8	0.4	0.4	0.2	0.1	0.0	0.0	0.0	24	0.9	0.0	0.4	0	0
	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.4	1.4	0.8	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	24	1.4	0.0	0.2	0	0
	5	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.3	0.4	0.3	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.2	0.1	0.0	24	0.4	0.0	0.1	0	0
	<mark>6</mark>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.8	2.0	0.4	0.2	24	2.0	0.0	0.2	0	0
		0.1	0.2	0.1	0.0	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.0	0.0	0.0	0.1	0.1	0.1	0.2	0.2	0.0	0.1	0.1	0.2	0.3	24	0.3	0.0	0.1	0	0
		0.2	0.2	0.2	0.3	0.2	0.3	0.3	0.4	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.3	24	0.4	0.0	0.1	0	0
		0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.5	0.6	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.6	0.0	0.1	0	- 0
1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 0.0	0.0	0.0	0.0 0.1	0.0	0.0	0.0	24 24	0.0	0.0	0.0	0	0
1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.4	0.5	0.4	0.0 C	0.0	0.3	0.0	0.3	0.3	0.1	0.3	0.3	0.0	22	0.1	0.0	0.0	0	0
1		0.2	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.5	0.5	0.5	Α	C	Č	1.0	0.7	0.9	1.0	1.0	1.0	0.9	0.9	0.8	21	1.0	0.2	0.6	0	0
1		0.8	0.8	0.8	0.8	0.7	0.8	0.8	0.8	0.8	0.8	0.9	1.1	1.0	0.9	0.9	0.9	0.8	1.0	1.1	1.1	1.1	0.9	0.8	0.8	24	1.1	0.7	0.9	0	0
1	5	0.7	0.8	0.8	0.8	0.7	0.6	0.5	0.5	0.5	0.9	0.8	0.8	0.7	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.3	0.4	24	0.9	0.3	0.6	0	0
1	6	0.4	0.5	0.5	0.7	0.6	0.6	1.0	1.2	1.0	0.9	0.8	0.8	0.9	0.8	0.9	0.9	0.7	0.6	0.7	0.6	0.7	0.8	0.7	0.6	24	1.2	0.4	0.7	0	0
1	7	0.7	0.9	0.9	0.9	0.8	0.8	0.8	0.7	0.8	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.7	0.7	M	M	M	2.5	0.0	0.4	21	2.5	0.0	0.8	0	0
1		0.7	0.6	0.8	0.8	0.8	0.7	0.7	0.7	0.7	0.7	0.7	1.0	1.1	0.8	0.5	0.4	0.5	0.2	0.2	0.2	0.3	0.3	0.3	0.3	24	1.1	0.2	0.6	0	0
1		0.2	0.3	0.3	0.3	0.2	0.2	0.1	0.2	0.3	0.6	0.6	0.4	0.5	0.5	0.4	0.4	0.5	0.5	0.6	0.5	0.5	0.6	0.6	0.5	24	0.6	0.1	0.4	0	0
21		0.5	0.6	0.6	0.7	0.7	0.8	1.0	0.9	1.0	1.2	1.1	0.9	0.9	0.8	1.0	0.8	0.9	1.1	1.1	1.1	1.1	1.3	1.2	1.1	24	1.3	0.5	0.9	0	0
2:		1.4	1.4 0.9	1.3	1.5 0.7	1.5	1.2	1.1	1.2 1.4	1.2 1.5	1.2 1.5	1.2	1.2 1.2	1.2	1.2	1.2 0.8	1.1	1.0	1.0	0.8 0.8	1.0 0.7	0.9	1.1	1.1 0.7	0.9	24	1.5 1.5	0.8	1.2	0	0
2:		0.9	0.7	1.0 0.8	0.7	1.0 0.7	1.1 0.8	1.4 0.7	0.8	1.0	1.2	1.3 1.2	1.5	1.2	1.0 1.0	1.0	0.9	0.8 1.0	0.6 1.0	0.8	0.7	0.8 0.8	0.9 0.8	0.7	0.8	24 24	1.5	0.0	0.9	0	0
2		0.7	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.9	0.7	0.6	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.4	0.5	0.5	24	0.9	0.4	0.6	0	0
2		0.4	0.5	0.4	0.5	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.3	0.2	0.2	0.3	0.2	0.2	0.3	0.3	0.2	0.2	0.3	0.3	0.2	24	0.5	0.2	0.3	0	0
2	6	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.4	0.4	1.2	1.1	0.6	0.6	0.5	0.5	0.5	0.6	0.6	0.5	0.8	0.7	0.7	24	1.2	0.2	0.5	0	0
2	7	0.7	0.8	0.7	0.7	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	24	0.8	0.4	0.5	0	0
2	8	0.4	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.4	0.5	0.4	0.4	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.5	24	0.6	0.4	0.5	0	0
2:	9	0.5	0.6	0.5	0.6	0.7	0.7	0.7	0.7	0.6	0.8	0.9	1.0	0.8	0.9	0.8	0.7	0.7	0.7	0.7	0.7	0.6	0.7	0.6	0.7	24	1.0	0.5	0.7	0	0
31	0	0.7	0.6	0.6	0.7	0.7	0.6	0.6	0.5	0.8	0.9	1.0	1.1	1.1	1.0	0.9	0.7	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.5	24	1.1	0.5	0.7	0	0
3:	1	0.5	0.5	0.6	0.6	0.7	0.7	0.6	0.7	0.7	0.7	0.8	0.9	0.9	1.0	1.0	1.0	1.0	0.8	0.7	0.7	0.7	0.7	0.6	0.6	24	1.0	0.5	0.7	0	0
Count		31	31	31	31	31	31	31	31	31	31	31	31	30	30	29	30	31	31	30	30	30	31	31	31	736					
Maximum		1.4 0.0	1.4 0.0	1.3 0.0	1.5 0.0	1.5 0.0	1.2 0.0	1.4 0.0	1.4 0.0	1.5 0.0	1.5 0.0	1.3 0.0	1.5 0.0	1.2 0.0	1.4 0.0	1.2 0.0	1.1 0.0	1.0 0.0	1.1 0.0	1.1 0.0	1.1 0.0	1.1 0.0	2.5 0.0	1.2 0.0	1.1 0.0	24 21					
Average		0.4	0.5	0.4	0.4	0.0	0.0	0.0	0.5	0.5	0.5	0.0	0.6	0.6	0.6	0.6	0.0	0.0	0.0	0.5	0.0	0.5	0.6	0.4	0.0	21					
Average		0.4	0.5	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.0	0.0	0.0	0.0	0.5	0.5	0.4	0.5	0.4	0.5	0.0	0.4	0.4						
Percentile	es		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	m Hourly		2.5
1	-		-																										um Daily		1.2
Data			0.0		0.1		0.2		0.3		0.5		0.6		0.7		0.8		1.0		1.1		1.4		2.5			Monthly			0.5
Notes		C - 0	Calibration	/ Span Cyc	le NA	A - No Data	Available	T -	Test	A-	MOE Audit	. M	- Equipme	nt Malfunct	ion / Dowr	R-	Rate of Ch	nange							-						

Figure B-1 Time History Plots of Measured Hourly Average and 24 Hour Average SO₂
Concentrations – Courtice (WPCP) Station

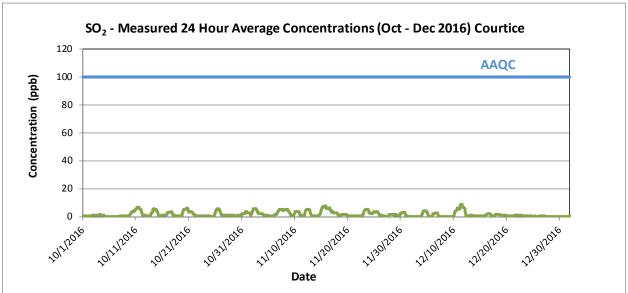
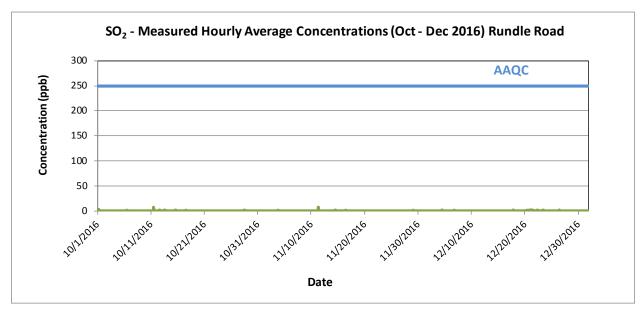
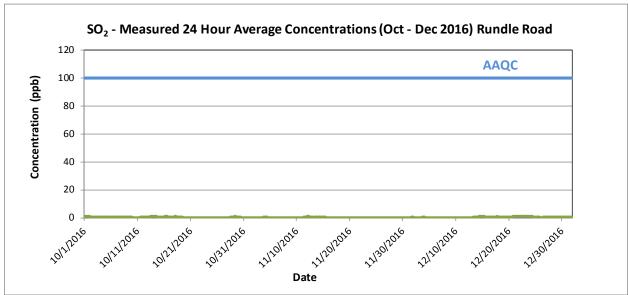




Figure B-2 Time History Plots of Measured Hourly Average and 24 Hour Average SO₂ Concentrations – Rundle Road Station

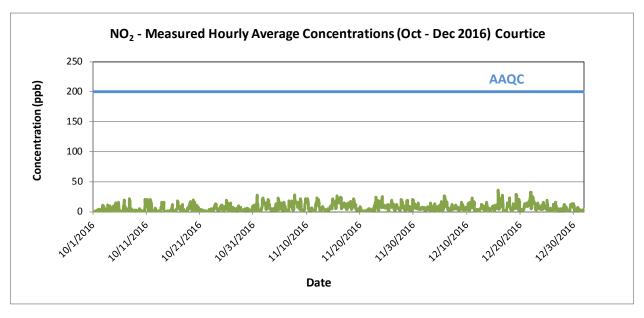
Appendix C NO2 Data Summaries and Time History Plots February 8, 2017

Appendix C NO₂ DATA SUMMARIES AND TIME HISTORY PLOTS

Project No.: 160950528 C.1

										0	NO ₂ - CC ctober pb)	DURTICE	2016																
Day	Hour	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200 Days>100
Day 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.7	0.4	0.4	0.5	0.4	1.7	2.6	2.0	2.0	2.6	2.5	2.1	24	2.6	0.0	0.8	0 0
2	1.9	3.2	4.0	0.6	2.7	3.8	3.6	3.3	2.2	1.6	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.2	0.5	1.8	10.3	8.2	5.6	9.6	24	10.3	0.0	2.7	0 0
3	3.9	4.7	6.9	5.3	4.8	3.8	4.8	4.8	1.7	1.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	11.0	9.7	9.0	3.1	4.4	24	11.0	0.0	3.4	0 0
4	3.9	5.3	5.8	6.2	7.4	9.3	9.3	7.7	3.5	1.8	0.6	0.0	0.0	0.0	0.0	0.0	0.3	2.0	2.3	2.7	2.9	6.9	9.9	5.7	24	9.9	0.0	3.9	0 0
5	2.1	0.4	3.3 0.3	0.4	0.3	0.3	5.3	14.8	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.9	3.5	2.0	2.0 9.7	10.1 1.5	15.5 18.3	0.4 19.7	0.5 12.2	24	15.5	0.0	2.6	0 0
6	0.0 8.0	0.5 6.5	8.8	0.2 5.8	0.1 2.9	2.2	0.5 4.5	0.8 5.3	0.5	0.6 0.3	0.7 0.3	0.5 0.4	0.5 0.3	0.0 0.2	0.0	0.2	0.1	0.2 1.4	6.6 4.3	9.7 5.1	1.5	18.3 21.7	17.6	16.5	24 24	19.7 21.7	0.0	3.1 5.4	0 0
8	9.0	2.1	0.7	0.3	1.6	4.4	2.1	2.3	1.2	1.5	0.5	0.0	0.0	0.0	0.3	1.2	0.5	1.7	1.6	2.2	1.3	2.8	2.4	1.9	24	9.0	0.0	1.7	0 0
9	2.1	1.9	2.9	2.4	1.3	1.6	2.2	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	1.8	0.8	4.5	3.8	2.9	2.1	1.6	2.8	24	4.5	0.0	1.5	0 0
10	1.3	1.2	0.6	1.5	0.1	0.3	1.4	1.1	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.5	20.6	15.5	15.0	12.4	10.5	24	20.6	0.0	3.9	0 0
11	9.9	8.5	9.1	13.3	14.7	16.6	19.9	17.1	8.6	0.5	0.6	0.0	0.0	0.0	0.0	0.4	1.8	3.0	11.5	20.8	17.5	11.9	14.0	13.3	24	20.8	0.0	8.9	0 0
12	9.6	2.5	1.3	0.7	1.1	1.1	1.1	1.3	1.5	1.5	1.6	1.3	1.7	2.4	1.1	1.4	2.5	4.0	6.3	1.6	1.2	1.6	0.9	8.0	24	9.6	0.7	2.1	0 0
13	0.8	0.7	0.6	0.2	1.5	1.0	1.3	C 15.2	10.0	1.6	1.1	0.9	1.0	1.1	1.4	1.0	2.0	3.1	5.2	6.8	6.1	9.2	15.4	15.7 0.4	22	15.7 15.2	0.2	3.5 4.8	0 0
14	12.9 0.5	11.9 1.0	10.8 0.6	11.3 0.6	13.3 1.1	12.4 1.1	13.3 1.2	15.2 0.5	10.8 0.3	0.2 0.8	0.0 0.8	0.0 0.8	0.0 0.7	0.0 1.0	0.1 1.1	0.0	0.0	0.1 3.4	0.0 2.9	0.6 2.4	0.2 5.3	0.3 12.0	0.9 5.5	3.7	24 24	12.0	0.0	2.0	0 0
16	2.7	2.1	1.1	0.8	0.7	1.1	1.3	1.2	1.4	1.4	1.8	1.5	1.4	1.7	1.6	4.1	4.2	4.9	4.7	4.5	6.2	6.4	17.8	15.3	24	17.8	0.7	3.7	0 0
17	6.6	4.8	6.6	7.6	8.2	5.0	5.9	8.5	7.2	4.3	2.1	1.8	1.9	1.6	2.3	1.2	3.3	10.2	11.7	8.5	5.6	2.8	2.7	4.0	24	11.7	1.2	5.2	0 0
18	4.0	3.2	2.6	1.3	1.5	1.2	1.2	0.8	1.0	1.0	0.8	0.7	0.9	1.2	1.0	1.6	1.8	1.7	2.7	5.8	3.5	5.1	5.5	4.9	24	5.8	0.7	2.3	0 0
19	4.3	5.2	10.0	6.5	8.9	13.5	16.8	15.8	9.7	6.7	5.2	4.7	7.5	6.7	4.8	2.5	1.1	0.8	5.2	16.9	18.7	18.2	17.3	13.1	24	18.7	0.8	9.2	0 0
20	13.2	15.2	12.1	10.7	10.6	8.3	10.2	2.2	1.2	1.3	6.5	11.3	4.6	6.4	6.0	5.4	5.4	6.5	7.5	4.5	4.0	3.1	3.4	2.6	24	15.2	1.2	6.8	0 0
21	3.2 0.8	3.1 0.3	1.3 0.5	2.2 1.0	2.6 0.4	3.3 0.5	3.6 1.0	3.6 0.8	3.0	1.7 0.5	1.9 0.4	2.1 0.5	2.3 0.3	1.6 0.4	1.8 0.1	1.8 0.5	1.8 0.7	1.8 0.9	2.6 1.6	1.6 1.9	1.4 3.5	1.5 2.2	0.9 1.7	0.6 3.0	24 24	3.6 3.5	0.6	2.1 1.0	0 0
22	2.9	1.8	2.0	3.1	5.1	3.1	4.2	4.9	0.6 4.9	1.5	1.3	1.3	0.3	1.1	1.4	1.5	2.6	6.5	5.7	7.7	11.3	11.1	10.9	13.3	24	13.3	0.1 0.9	4.6	0 0
24	13.8	9.3	11.7	4.4	5.1	3.3	5.0	3.3	3.4	3.2	2.6	2.0	2.3	1.9	2.5	3.5	2.9	4.9	5.3	3.9	5.7	7.4	8.1	6.5	24	13.8	1.9	5.1	0 0
25	7.8	6.2	7.5	11.0	9.5	8.0	10.7	7.7	2.3	1.4	1.5	1.2	1.2	1.6	2.1	2.4	2.8	5.4	8.9	4.9	5.7	8.9	8.4	3.9	24	11.0	1.2	5.5	0 0
26	3.8	7.0	19.5	13.6	14.6	12.3	14.4	11.4	7.9	2.6	1.6	1.1	0.5	1.1	1.3	1.7	0.4	1.1	10.4	14.9	10.6	7.7	4.6	5.6	24	19.5	0.4	7.1	0 0
27	4.3	3.1	2.6	5.4	2.6	7.7	6.0	7.7	6.4	5.5	1.0	1.5	2.5	4.6	4.9	4.1	4.2	3.1	3.3	2.6	5.4	4.9	5.4	4.7	24	7.7	1.0	4.3	0 0
28	2.9	5.8	3.8	2.0	3.0	3.8	8.9	9.6	2.6	2.2	2.1	1.7	1.5	1.4	3.2	6.8	7.0	6.0	3.3	1.6	0.5	0.5	0.5	0.8	24	9.6	0.5	3.4	0 0
29	1.1	1.2	1.5	1.4	1.7	1.4	2.1	3.6	3.3 2.3	2.8	2.4	2.5	2.7	2.7	4.5	3.7	3.0	2.6	2.1	2.1	1.9	3.4	5.3	5.7	24	5.7	1.1	2.7	0 0
30	3.7 7.3	4.7 5.8	3.5 8.1	4.0 9.6	3.6 6.8	2.1 7.6	3.3 10.7	2.9 11.1	7.6	2.0 2.7	1.3 1.3	1.1 1.4	0.8 1.8	1.0 1.6	1.2 2.0	2.2 1.5	1.7 2.1	3.0 10.6	2.2 27.2	1.4 19.4	2.0 14.4	4.3 13.0	6.9 11.8	10.1 2.5	24 24	10.1 27.2	0.8 1.3	3.0 7.8	0 0
Count	31	3.0	31	31	31	31	31	30	30	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	742	27.2	1.3	7.0	
Maximum	13.8	15.2	19.5	13.6	14.7	16.6	19.9	17.1	10.8	6.7	6.5	11.3	7.5	6.7	6.0	6.8	7.0	10.6	27.2	20.8	18.7	21.7	19.7	16.5	24				
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.2	0.3	0.4	0.4	22				
Average	4.8	4.2	4.8	4.3	4.5	4.5	5.7	5.7	3.2	1.7	1.3	1.3	1.2	1.3	1.5	1.6	1.9	3.1	5.4	6.3	6.6	7.7	7.2	6.3					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				m Hourly ium Daily	27.2 9.2
Data		0.1		0.6		1.2		1.6		2.2		3.2		4.7		6.7		10.7		13.7		19.1		27.2			Monthly	Average	4.0
Notes		C - Calibratio	on / Span Cy	rcle N	A - No Data	Available	т-	Test	A	- MOE Audit	М	- Equipmer	nt Malfunct	tion / Dowr	R -	Rate of Ch	nange												

										No	NO ₂ - Co vember pb)	OURTICE	2016																
Dav	Hour	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count M	aximum N	tinimum	Average	Hrs>200 Days>100
1	0.4	0.8	1.8	1.3	1.0	1.0	1.1	1.1	0.8	1.1	1.2	1.4	3.3	3.0	4.1	5.8	4.7	9.7	18.5	20.7	22.4	20.8	21.5	17.8	24	22.4	0.4	6.9	
2	17.7	14.0	15.0	16.0	15.2	14.9	13.3	13.0	11.6	7.4	7.7	3.3	3.5	4.6	5.5	6.6	13.3	8.1	15.2	9.7	20.1	20.1	17.8	15.2	24	20.1	3.3	12.0	0 0
3	8.6	12.5	9.7	6.0	5.0	4.8	4.9	5.6	5.4	4.1	2.6	2.1	2.3	2.1	2.5	2.7	4.3	5.0	5.0	4.4	3.2	4.2	4.7	4.2	24	12.5	2.1	4.8	0 0
4	4.8	3.2	2.9	4.9	4.2	7.0	12.9	10.3	4.3	2.1	2.0	1.4	1.6	1.8	2.1	4.5	6.5	4.2	22.4	17.9	10.7	8.4	7.0	3.3	24	22.4	1.4	6.3	
5	6.8	13.7	14.0	13.0	10.5	12.9	14.9	12.5	6.8	6.6	6.0	2.0	3.1	3.7	2.1	2.0	3.7	6.2	15.6	12.2	15.5	9.2	2.8	7.2	24	15.6	2.0	8.5	
6	8.8	3.8	1.4	2.6	1.4	1.5	4.0	2.7	1.8	1.4	0.9	1.0	0.7	0.3	0.4	0.5	0.5	0.7	16.4	17.6	14.8	12.9	11.9	11.9	24	17.6	0.3	5.0	
7	10.6	11.4	9.0	9.6	12.0	14.5	14.7	16.3	17.7	8.4	3.6	3.4	3.5	3.0	3.1	3.1	6.8	9.3	16.5	27.2	23.7	21.2	17.8	17.8	24	27.2	3.0	11.8	
8	15.4	14.9	14.0	14.4	15.1	14.5	14.2	15.4	15.9	10.9	7.0	7.4	10.1	11.0	10.6	9.9	6.6	3.4	4.2	10.7	21.3	21.1	17.3	18.0	24	21.3	3.4	12.6	
9	9.1 17.1	4.6 17.3	4.3 15.8	1.8	1.7	2.1	2.4	2.8	1.8	1.9 5.3	2.1 5.5	1.9 4.7	1.8 4.3	2.0	2.0	3.1 2.0	3.8	6.2 3.7	9.8	16.9 3.2	18.7 3.3	21.0 3.0	19.9 4.3	19.2 5.9	24	21.0	1.7 2.0	6.7 9.3	
11	4.8	6.4	1.9	1.4	1.6	2.6	1.8	2.2	2.0	1.6	1.0	1.5	1.4	1.7	1.8	2.2	2.3	5.7	9.9	15.8	15.6	14.1	9.9	19.4	24	19.4	1.0	5.4	
12	23.2	18.9	20.1	18.7	16.9	19.5	20.3	20.8	16.1	11.4	7.0	6.7	3.7	3.2	1.7	1.2	1.4	1.4	1.7	2.2	3.6	4.4	5.2	3.7	24	23.2	1.0	9.7	
13	5.5	8.3	5.5	4.5	4.5	4.9	4.3	5.0	3.8	3.2	3.5	3.3	2.1	2.3	2.3	2.3	2.4	1.8	2.4	2.7	2.5	2.1	2.4	3.2	24	8.3	1.8	3.5	
14	3.1	4.7	3.0	3.0	3.6	3.0	2.8	4.1	4.3	4.8	5.7	7.7	7.3	7.0	10.2	7.5	6.4	8.4	6.0	4.4	10.7	10.2	21.2	18.5	24	21.2	2.8	7.0	
15	19.6	14.6	11.7	11.3	12.9	15.7	14.1	16.5	16.6	15.6	12.1	7.4	6.3	5.4	6.0	7.1	13.8	26.6	24.9	24.6	23.2	19.4	15.8	15.5	24	26.6	5.4	14.9	
16	16.0	15.9	14.6	14.3	15.8	16.4	18.9	17.6	18.5	21.0	23.7	22.1	22.4	11.3	5.3	10.0	6.4	5.8	6.7	10.3	9.3	9.6	8.5	9.3	24	23.7	5.3	13.7	0 0
17	8.9	9.4	14.1	11.1	11.0	6.7	8.4	10.9	13.0	11.1	9.4	10.7	7.0	4.1	3.9	3.7	7.1	12.1	8.6	8.8	5.8	10.8	14.5	10.9	24	14.5	3.7	9.3	0 0
18	9.3	9.3	11.1	13.1	13.7	13.4	12.2	16.7	16.1	8.8	5.1	3.7	3.8	4.3	4.6	8.0	10.1	9.5	11.8	12.4	13.5	19.1	21.2	16.6	24	21.2	3.7	11.1	0 0
19	12.9	13.0	7.3	7.3	8.6	12.3	10.0	5.2	2.1	2.7	4.2	2.5	2.9	3.7	3.9	5.2	5.0	4.3	2.9	3.8	2.3	2.1	2.0	3.0	24	13.0	2.0	5.4	0 0
20	2.5	3.4	5.1	8.4	6.4	4.2	0.8	1.1	1.1	0.6	1.0	0.9	0.7	0.8	0.8	1.1	1.8	1.5	0.8	1.0	0.8	0.8	0.7	0.9	24	8.4	0.6	2.0	
21	1.3	0.7	0.8	0.7	1.5	1.6	1.9	2.1	2.0	2.1	1.7	1.6	1.5	1.7	3.1	4.4	5.2	3.4	3.6	4.4	3.6	2.1	1.6	2.9	24	5.2	0.7	2.3	
22	1.6	1.8	1.9	3.0	2.4	2.3	2.5	3.6	3.2	2.7	2.8	2.7	2.5	3.0	3.6	5.4	4.9	10.2	10.3	6.1	2.8	14.6	14.5	18.0	24	18.0	1.6	5.3	
23	21.1	23.8 17.3	21.2	13.6	9.5	15.4 25.2	18.3 15.2	18.7	17.6	11.1	6.6	5.8	1.0 10.6	0.9	1.3	6.7	9.1	9.4 8.2	14.6 9.7	17.9	14.2 8.3	11.5	7.4	8.4	24	23.8 25.2	0.9	11.9	
24	10.5		13.0	7.6	16.4			7.8 10.4	8.4	9.6 C	11.4	8.8 C		6.9	6.6	7.0 9.1	7.3		10.2	9.6	10.3	7.2	6.3	9.6	24	18.7	6.3	10.4	
25	7.8 11.5	10.2 11.6	11.1 12.2	8.0 8.3	10.1 8.3	9.7 7.3	12.4 12.8	9.4	11.1	7.4	C 5.4	2.6	9.0 2.3	7.3 1.8	8.2 2.4	2.5	10.1 7.0	9.3 9.0	11.2	8.2 8.0	10.5	6.8 11.6	9.7 7.9	18.7 6.7	20 24	12.8	6.8 1.8	9.8 7.9	
25	8.4	7.9	7.3	6.6	6.5	7.3 5.5	4.4	6.0	6.6	4.5	3.4	3.2	2.3	2.3	3.1	3.1	5.7	6.7	11.2	19.9	19.1	16.9	16.9	15.8	24	19.9	2.3	8.1	
28	10.9	6.9	7.6	6.5	10.9	6.2	5.4	9.3	6.3	4.0	2.9	2.4	2.4	3.7	2.9	5.8	5.8	5.5	8.4	17.9	4.0	11.3	19.8	6.8	24	19.8	2.4	7.2	
29	5.6	8.2	5.9	3.9	4.2	5.2	3.6	5.8	7.9	4.8	1.9	3.0	3.1	3.1	2.6	2.0	2.3	2.2	2.4	2.6	2.7	9.1	20.3	17.7	24	20.3	1.9	5.4	
30	19.7	19.0	15.9	10.9	7.0	11.5	12.8	10.7	5.9	5.9	5.9	7.8	5.2	6.8	10.1	7.8	8.4	7.0	10.9	6.0	5.3	7.2	14.8	9.0	24	19.7	5.2	9.6	
31																													0 0
Count	30	30	30	30	30	30	30	30	29	29	29	29	30	30	30	30	30	30	30	30	30	30	30	30	716				
Maximum	23.2	23.8	21.2	18.7	19.4	25.2	22.1	21.1	18.5	21.0	23.7	22.1	22.4	11.3	10.6	10.0	13.8	26.6	24.9	27.2	23.7	21.2	21.5	19.4	24				I
Minimum	0.4	0.7	0.8	0.7	1.0	1.0	0.8	1.1	0.8	0.6	0.9	0.9	0.7	0.3	0.4	0.5	0.5	0.7	0.8	1.0	0.8	0.8	0.7	0.9	20				I
Average	10.1	10.3	9.3	8.3	8.6	9.4	9.6	9.5	8.4	6.3	5.3	4.6	4.4	3.8	4.0	4.7	5.9	6.8	9.9	10.9	10.7	11.1	11.5	11.2					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				m Hourly	27.2
Data		1.8		2.5		3.6		4.9		6.7		8.4		10.6		13.8		17.6		19.9		23.6		27.2				num Daily y Average	14.9 8.1
Notes	(- Calibratio	n / Span Cy	cle N	A - No Data	Available	т-	Test	A-	MOE Audit	М	- Equipme	nt Malfunc	tion / Dowr	1														


										De	NO ₂ - Co cember pb)	DURTICE	2016																
Dav	Hour 0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count M	aximum M	linimum	Average	Hrs>200 Days>100
1	6.5	6.0	5.0	4.8	4.0	5.3	6.1	5.2	5.7	4.1	3.9	3.5	4.1	4.2	4.4	5.1	6.8	7.0	7.6	6.6	5.6	5.8	6.2	6.2	24	7.6	3.5	5.4	
2	7.2	4.8	4.0	2.6	3.5	2.7	4.3	6.2	6.1	6.3	4.3	2.4	2.5	3.3	3.8	4.2	5.9	7.3	8.9	7.1	4.2	5.8	4.6	6.0	24	8.9	2.4	4.9	0 0
3	5.9	4.1	2.3	2.2	4.6	8.9	7.9	13.9	10.0	4.0	1.5	1.1	1.2	1.7	1.2	1.8	3.4	3.8	5.0	4.9	2.9	5.8	6.6	9.1	24	13.9	1.1	4.7	0 0
4	13.2	12.3	8.0	4.2	3.0	4.4	3.1	4.8	2.3	2.6	8.4	2.3	0.2	0.1	0.3	0.1	3.2	5.5	1.2	4.2	10.2	5.1	5.2	9.9	24	13.2	0.1	4.8	0 0
5	11.1	2.8	1.1	0.7	1.0	0.9	0.7	7.9	16.7	14.6	10.8	4.7	5.1	3.0	3.2	4.2	7.3	9.5	7.1	9.1	14.8	26.6	25.7	23.8	24	26.6	0.7	8.9	
6	21.1	19.1	14.4	17.0	17.2	14.5	15.5	15.9	12.7	12.7	7.3	6.7	3.8	5.1	4.0	3.0	5.0	2.6	4.5	1.7	1.6	1.4	1.4	2.0	24	21.1	1.4	8.8	
7	2.7	2.4	2.2	2.2	4.9	8.6	6.4	11.4	12.0	5.0	5.8	4.6	4.2	5.5	4.4	4.3	4.4	4.3	5.3	5.0	5.5	4.9	8.7	10.6	24	12.0	2.2	5.6	
8	10.0	7.9	6.7	5.6	4.4	4.6	4.7	4.4	5.2	7.6	3.9	4.6	3.7	3.0	2.2	3.3	4.2	4.3	5.0	5.6	6.1	6.7	4.0	7.7	24	10.0	2.2	5.2	
9	13.5 4.8	15.3 5.1	10.6 4.7	3.7	8.9 7.8	7.6	8.5 8.9	11.1	10.6 14.4	6.6 10.1	4.1 7.9	7.6	1.7 5.3	0.6 3.4	2.8 0.7	3.1 4.7	6.2 12.8	5.7 15.5	6.1 15.4	5.3 11.9	5.0 15.2	6.7 7.5	4.0 6.1	5.1 8.1	24	15.3 15.5	0.6	7.0 8.4	
10	22.8	20.6	19.1	13.6	12.0	16.4	16.6	16.5	14.4	12.1	11.8	15.3	2.3	1.3	1.4	0.8	1.5	2.1	2.2	2.1	2.0	2.0	1.7	1.6	24	22.8	0.7	8.9	
12	3.2	1.7	2.4	2.0	2.2	1.9	2.6	10.3 C	14.0	12.1 C	11.0	4.2	5.3	4.7	3.9	5.6	6.5	6.1	6.8	10.0	12.1	7.5	5.2	5.0	20	12.1	1.7	4.9	
13	5.6	5.4	5.8	4.8	5.7	9.1	3.8	6.4	1.7	2.2	A	Α.2	2.8	4.0	C.5	5.0 C	0.5 C	14.8	12.0	15.2	7.0	6.7	5.9	3.4	19	15.2	1.7	6.4	
14	4.6	4.5	4.8	5.7	5.6	3.7	3.4	3.7	2.5	2.1	1.6	2.4	2.7	2.7	2.4	3.3	3.8	5.0	6.0	7.6	6.2	8.6	9.5	5.5	24	9.5	1.6	4.5	
15	5.2	4.1	3.9	5.0	6.3	1.8	4.3	7.0	10.7	7.2	6.1	4.4	5.5	7.5	4.8	9.0	8.0	11.7	7.1	7.3	5.7	5.6	10.9	35.5	24	35.5	1.8	7.7	
16	24.2	6.6	3.8	5.1	8.7	22.5	14.1	13.2	16.7	19.7	20.8	16.8	8.5	8.5	11.5	15.9	23.8	20.2	27.9	8.8	10.6	2.1	2.3	2.2	24	27.9	2.1	13.1	0 0
17	1.5	1.9	1.7	1.8	1.4	1.3	1.7	1.4	1.4	1.5	1.7	1.9	2.3	2.9	5.0	9.6	14.1	10.5	9.4	9.1	8.9	13.2	16.1	15.8	24	16.1	1.3	5.7	о с
18	16.8	22.7	16.1	11.2	7.0	6.2	5.4	3.9	2.8	2.6	2.0	1.3	1.5	1.5	1.5	1.2	2.6	6.4	10.3	13.0	11.0	4.9	8.6	7.0	24	22.7	1.2	7.0	о с
19	7.2	5.8	5.0	10.3	11.9	10.9	15.9	28.6	27.2	27.7	15.0	13.7	5.9	7.7	9.6	7.4	4.3	3.2	3.3	16.9	20.6	2.9	17.1	5.6	24	28.6	2.9	11.8	0 0
20	2.2	2.3	3.1	2.9	2.3	3.1	2.8	1.9	2.9	3.7	3.5	2.8	2.2	2.4	2.1	2.5	2.9	3.7	5.7	7.4	12.8	11.3	10.4	10.8	24	12.8	1.9	4.5	
21	9.1	8.8	8.9	10.3	11.0	11.8	12.8	14.2	13.7	10.0	9.8	8.8	10.1	14.8	13.4	10.9	11.8	12.4	16.4	10.4	15.1	18.3	27.6	32.4	24	32.4	8.8	13.4	
22	32.8	32.3	22.3	5.2	6.5	6.5	8.5	23.4	25.1	22.1	24.4	23.2	23.2	17.5	13.6	16.6	14.2	14.3	14.6	12.7	13.8	11.6	12.3	3.9	24	32.8	3.9	16.7	
23	3.0	4.4	3.9	4.2	5.4	6.9	10.1	10.6	9.8	14.2	11.3	7.4	5.7	4.9	4.9	5.9	8.3	5.8	4.2	3.9	4.4	4.9	5.4	4.9	24	14.2	3.0	6.4	
24	6.6	10.1	11.3	4.5	3.9	4.2	6.2	10.4	16.1	10.0	11.5	11.4	8.0	6.2	8.8	9.1	9.0	8.8	7.0	6.5	4.8	4.2	4.3	5.6	24	16.1	3.9	7.9	
25	7.3	8.3	9.1	18.9	9.6	2.8	1.9	1.7	1.7	1.5	2.1	1.3	1.2	0.9	0.8	1.0	1.7	5.6	4.3	1.9	2.0	2.5	1.7	1.5	24	18.9	0.8	3.8	
26	2.2 1.6	1.2 2.0	1.1 1.9	1.1 2.0	4.9 2.0	5.1 4.6	11.0 2.0	12.4 2.1	7.8 2.2	6.1 2.5	3.2 3.3	3.5 2.9	4.0 2.1	4.5 2.3	6.0 3.4	7.4 3.0	15.0 4.4	9.7 4.6	9.2 4.3	4.2 3.1	6.5 4.2	4.0 3.8	1.5 3.3	1.0 2.1	24 24	15.0 4.6	1.0 1.6	5.5 2.9	
27	3.1	5.2	4.2	3.7	5.0	7.4	10.2	12.0	9.3	9.6	6.8	1.8	2.0	5.4	6.8	8.9	7.3	1.5	1.4	1.9	1.3	1.8	2.7	1.4	24	12.0	1.3	5.0	
29	1.2	1.5	1.8	1.9	2.1	2.1	2.3	2.5	2.5	2.9	5.0	12.1	12.4	9.5	11.0	8.7	10.0	10.2	13.0	8.4	9.5	7.6	7.8	10.8	24	13.0	1.2	6.5	
30	12.1	13.0	6.7	10.1	4.1	2.6	3.4	4.7	4.5	2.2	2.2	1.4	1.6	1.8	2.3	3.2	6.5	5.6	4.2	4.1	3.0	6.5	7.4	3.2	24	13.0	1.4	4.8	
31	3.0	3.8	3.0	3.2	1.8	1.3	0.9	1.5	1.2	2.0	2.1	2.2	1.8	1.6	1.8	1.8	2.3	2.4	2.3	2.0	1.9	3.0	3.3	3.0	24	3.8	0.9	2.2	
Count	31	31	31	31	31	31	31	30	30	30	29	30	31	31	30	30	30	31	31	31	31	31	31	31	735				
Maximum	32.8	32.3	22.3	18.9	17.2	22.5	16.6	28.6	27.2	27.7	24.4	23.2	23.2	17.5	13.6	16.6	23.8	20.2	27.9	16.9	20.6	26.6	27.6	35.5	24				i
Minimum	1.2	1.2	1.1	0.7	1.0	0.9	0.7	1.4	1.2	1.5	1.5	1.1	0.2	0.1	0.3	0.1	1.5	1.5	1.2	1.7	1.3	1.4	1.4	1.0	19				II.
Average	8.7	7.9	6.4	5.9	5.8	6.5	6.6	9.0	9.0	7.8	7.0	6.0	4.6	4.6	4.7	5.5	7.2	7.4	7.7	7.0	7.6	6.8	7.7	8.1					
Percentiles		10		20		30		40	-	50		60		70		80		90		95		99		100				m Hourly	
Data		1.7		2.3		3.3		4.3		5.1		6.3		8.1		10.6		14.3		17.0		27.4		35.5				um Daily Average	16.7 6.9
Notes	C	- Calibration	n / Span Cy	cle N	A - No Data	Available	т.	Test	A-	MOE Audit	M	- Equipme	nt Malfunct	tion / Dow	n R-	Rate of C	hange												

												tober	undle Road	2016																	
	Hour																														
Day		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	0.8	Count	Maximum	Minimum	Average	Hrs>200	Days>100
1		1.6 1.2	1.6 3.3	4.5 2.8	6.0 1.7	5.3 1.9	6.4 2.9	2.1 1.7	1.6 1.9	1.4 2.1	1.3 1.7	1.5 1.9	1.4 1.7	1.5 1.9	0.4 2.3	0.8 1.9	0.7 2.7	0.8 2.5	3.3 3.1	1.4 5.5	4.5 3.9	2.9 2.6	3.3 1.6	1.3 2.8	2.4	24 24	6.4 5.5	0.4 1.2	2.3	0	0
2		1.7	1.2	1.0	0.4	0.5	0.7	1.6	2.3	2.7	1.4	2.6	2.4	2.4	1.4	1.5	1.6	3.2	9.6	9.0	4.1	3.3	4.7	2.5	0.7	24	9.6	0.4	2.4	0	0
4		0.5	2.7	0.9	0.9	1.4	1.8	3.5	4.4	3.6	2.1	1.6	1.0	1.1	1.3	1.6	1.4	5.8	2.1	3.7	4.4	3.5	3.4	5.0	6.9	24	6.9	0.5	2.7	0	0
5		9.5	4.6	2.6	2.5	9.9	17.2	12.5	9.5	9.1	3.9	1.7	1.1	5.7	1.3	2.2	3.5	2.0	4.7	5.4	6.8	8.7	8.9	6.8	6.0	24	17.2	1.1	6.1	0	o o
6		5.2	3.3	3.9	4.3	5.5	7.4	9.8	7.6	4.2	3.3	2.7	3.8	2.4	2.5	3.1	2.7	2.9	8.6	8.5	9.9	11.5	6.6	4.4	12.7	24	12.7	2.4	5.7	o	ō
7		4.3	4.4	7.3	5.7	4.5	6.0	7.8	10.2	5.9	3.3	2.3	2.1	3.1	3.0	2.5	2.6	3.4	6.7	9.0	6.0	8.0	5.6	5.1	7.0	24	10.2	2.1	5.2	0	0
8	3	3.0	7.3	3.5	3.0	3.1	4.7	0.5	0.2	0.3	0.4	0.3	0.4	0.9	1.4	1.2	0.6	0.7	0.6	0.8	0.9	0.9	1.0	1.1	1.2	24	7.3	0.2	1.6	0	0
9		1.4	0.9	0.9	0.4	0.4	0.4	0.6	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.4	1.0	0.6	0.3	0.0	0.3	24	1.4	0.0	0.3	0	0
10		0.2	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5	0.6	1.1	1.6	1.3	1.5	4.4	8.4	5.0	5.4	3.0	1.7	1.8	24	8.4	0.0	1.5	0	0
11		1.8	1.9	1.7	1.5	2.7	5.3	9.0	7.4	8.6	3.2	6.0	1.7	3.8	8.1	7.1	4.2	3.6	6.9	9.6	11.4	4.7	4.3	7.2	5.2	24	11.4	1.5	5.3	0	0
12		2.8	6.9	5.3	5.0	7.0	9.2	6.7	6.1	6.5	4.3	4.1	5.6	4.0	4.0	4.8	10.5	10.9	14.3	19.1	23.5	7.0	6.5	5.3	4.4	24	23.5	2.8	7.7	0	0
13	3	3.7	3.3	3.5	4.0	1.0	0.5	1.1	1.9	1.0	С	С	С	0.3	0.4	0.3	0.4	0.3	0.7	1.0	0.8	0.4	0.6	1.3	0.3	21	4.0	0.3	1.3	0	0
14		0.4	0.4	0.6	0.7	1.2	1.1	2.4	4.5	10.7	4.1	5.5	4.2	2.0	1.2	0.9	1.1	2.5	12.1	14.0	6.8	4.9	4.5	8.9	3.0	24	14.0	0.4	4.1	0	0
15		4.3	6.0	3.0	3.3	3.4	3.6	3.4	3.1	2.4	2.3	1.5	1.5	1.4	2.4	1.9	2.4	3.9	2.9	2.9	5.8	5.9	6.0	10.8	8.9	24	10.8	1.4	3.9	0	0
16		7.6	6.9	4.8	1.9	1.8	2.1	4.4	3.1	3.5	3.1	2.9	3.5	6.2	4.5	6.6	7.5	3.6	5.2	10.2	13.9	14.2	8.0	4.4	4.1	24	14.2	1.8	5.6	0	0
1/		2.4	1.2 12.0	5.4 11.0	2.9	2.0 4.1	2.1 2.5	1.9 7.5	4.8 3.6	6.0 3.0	4.4 4.3	3.1 2.5	3.2 2.9	2.6 2.8	2.2 4.7	4.6 4.5	7.5 5.1	3.8 4.5	11.7 4.9	3.3 2.8	2.8 0.6	6.7 0.2	4.7 0.2	5.1 4.1	7.2 0.0	24 24	11.7 12.0	1.2 0.0	4.2	U O	0
18		5.6 0.0	0.5	3.0	4.4 11.4	15.3	17.8	7.5 17.9	19.2	16.0	7.4	3.2	2.9	8.5	8.3	7.0	4.8	4.5 5.7	8.1	4.8	5.3	5.3	3.6	4.1	3.6	24	19.2	0.0	7.7	0	0
20		3.1	4.8	4.6	4.6	5.5	3.8	17.5	15.2	10.0	7.4 C	3.2 C	Z.3	5.5	2.2	1.2	0.6	0.2	0.0	0.3	0.0	0.0	0.0	0.0	0.0	18	5.5	0.0	2.0	- 0	- 0
21		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
22		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	0	0
23		0.0	0.0	0.0	0.0	1.2	0.0	1.3	5.2	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.9	0.5	0.5	0.6	24	5.2	0.0	0.5	o	ō
24		5.2	1.5	0.3	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.3	0.0	0.0	0.0	0.0	0.0	0.0	4.5	6.3	24	6.3	0.0	0.8	0	0
25	(0.0	0.0	0.0	0.0	0.0	0.1	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	2.8	0.0	0.1	0	0
26	(0.0	0.0	0.0	0.0	0.0	0.0	0.7	1.6	3.0	0.0	0.0	0.0	0.0	1.8	1.6	0.5	1.5	3.1	6.0	5.3	3.2	0.0	5.5	0.0	24	6.0	0.0	1.4	0	0
27	(0.1	1.3	0.0	0.6	0.4	1.7	1.7	3.4	1.5	1.1	3.2	1.6	0.7	1.0	0.5	0.0	0.0	0.0	0.0	0.0	0.2	0.5	0.4	0.4	24	3.4	0.0	0.8	0	0
28	(0.0	0.0	0.0	0.0	0.0	0.0	1.2	2.1	0.0	0.0	0.0	0.0	0.0	0.0	3.3	6.3	9.5	14.7	10.1	5.5	2.8	2.0	2.0	1.9	24	14.7	0.0	2.6	0	0
29		1.9	1.5	4.4	0.9	1.7	2.2	6.5	7.0	7.5	6.3	5.8	3.6	3.7	4.9	7.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	7.5	0.0	3.0	0	0
30		2.2	4.3	2.8	4.2	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	4.3	0.0	0.6	0	0
31		0.0	0.0	0.0	0.0	0.0	0.0	1.0	2.9	0.6	0.0	0.0	0.0	0.0	0.0	0.0	1.7	5.2	5.9	4.1	5.3	4.8	4.0	3.3	5.0	24	5.9	0.0	1.8	0	0
Count		31	31	31	31	31	31	30	30	30	29	29	29	31	31	31	31	31	31	31	31	31	31	31	31	735					
Maximum		9.5	12.0	11.0	11.4	15.3	17.8	17.9	19.2	16.0	7.4	6.0	5.6	8.5 0.0	8.3	7.1	10.5	10.9	14.7	19.1	23.5	14.2	8.9	10.8	12.7	24 18					
Minimum		0.0 2.3	0.0 2.6	0.0 2.5	0.0 2.3	0.0 2.6	0.0 3.2	0.0 3.7	0.0 3.8	0.0 3.3	0.0 2.0	0.0 1.8	0.0 1.5	2.0	0.0 1.9	0.0 2.2	0.0 2.4	0.0 2.5	0.0 4.3	0.0 4.5	0.0 4.3	0.0 3.5	0.0 2.7	0.0 3.2	0.0 2.9	18					
Average		د.ع	2.0	2.3	2.3	2.0	3.2	3.7	3.0	3.3	2.0	1.0	1.5	2.0	1.7	4.4	2.4	2.3	4.3	4.3	4.5	3.3	2.7	3.2	2.3						
Percentiles			10		20		30		40		50		60		70		80		90		95		99		100				um Hourly mum Daily		23.5 7.7
Data			0.0		0.0		0.4		1.1		1.8		2.8		3.8		5.1		7.0		9.3		15.1		23.5				ly Average		2.8
Notes		C - C	Calibration	/ Span Cycle	. NA	- No Data	Available	Т-	Test	A-	MOE Audit	М	- Equipmen	t Malfuncti	on / Down	R - I	Rate of Cha	ange													-

											No	NO ₂ - Ru vember pb)	undle Roa	d 2016																	
	Hour	_	400	200	200	400	500	500	700	000	222	4000	4400	4300	4200	4400	4500	4500	4700	4000	4000	2000	2400	2200	2200	S			•	200	D 400
Day	1	1.5	100 1.9	200 1.7	300 3.6	400 6.4	500 7.4	6.2	700 6.3	3.9	900 3.0	3.2	1100 1.9	1200 3.1	1300 5.6	1400 6.2	1500 3.9	1600 6.0	1700 16.2	1800 5.6	1900 4.4	2000 7.5	2100 4.2	3.3	2300 2.5	Count 24	Maximum 16.2	Minimum 1.5	Average 4.8	Hrs>200	Days>100
	2	2.0	1.1	0.5	1.5	1.6	4.8	3.7	5.0	3.6	3.6	3.3	0.2	0.0	4.4	10.1	18.9	13.6	16.5	12.2	11.1	7.6	6.4	4.0	1.5	24	18.9	0.0	5.7	0	0
3	3	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	2.5	0.0	0.1	0	0
4	4	0.0	0.0	0.0	0.0	0.0	0.0	2.2	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.1	3.3	9.0	7.7	5.0	6.3	3.2	7.2	10.7	6.0	24	10.7	0.0	2.6	0	0
	5	7.3	15.8	16.5	7.4	5.7	8.7	9.4	6.9	3.7	3.4	6.2	0.0	2.0	3.4	2.2	4.2	0.2	4.3	3.6	1.0	0.4	0.0	0.0	0.0	24	16.5	0.0	4.7	0	0
	5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.2	1.3	2.7	9.2	2.1	1.9	2.7	1.7	8.0	0.2	24	9.2	0.0	1.0	0	0
	7	0.2	0.0	0.0	0.0	0.3	0.8	2.4	3.7	3.9	8.8	7.2	4.2	3.3	3.4	4.6	4.7	6.7	12.4	11.5	7.8	7.9	6.2	3.2	3.8	24	12.4	0.0	4.5	0	0
3	B	1.4 0.0	0.4	0.7 0.0	0.3	0.0	1.2 0.0	3.0 0.0	4.4	4.1 0.0	10.3 0.0	7.3 0.0	7.7	11.9 0.0	12.5 0.0	14.1 0.0	16.3 0.0	16.4 0.0	7.5 0.3	7.9	19.5	9.3 2.3	6.9 5.8	6.2 7.3	3.3 5.4	24 24	19.5 7.3	0.0	7.2 1.0	0	U
10	0	4.0	5.2	4.4	7.7	13.6	13.1	14.0	0.0 16.3	15.6	7.9	7.1	0.0 5.7	4.9	4.5	3.9	4.1	5.0	5.4	0.3 4.9	1.3 5.0	6.5	10.0	12.3	16.0	24	16.3	3.9	8.2	- 0	0
11	1	9.3	5.1	0.0	0.0	0.0	0.0	0.0	10.5 C	13.0	7.5 C	7.1 C	3.7 C	-4.5 C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	7.4	11.5	18	11.5	0.0	1.9	0	0
12	2	21.1	5.5	0.0	0.0	6.1	7.6	2.3	6.4	13.4	16.6	9.6	9.5	4.6	4.1	1.8	1.0	1.0	1.8	2.1	2.0	4.2	6.6	7.0	6.1	24	21.1	0.0	5.9	ō	0
13	3	11.3	15.2	7.5	6.6	5.0	5.5	5.6	8.4	6.5	4.4	4.4	4.5	4.1	3.6	4.3	4.2	5.0	4.8	5.0	5.6	6.6	4.5	5.1	5.5	24	15.2	3.6	6.0	0	0
14	4	6.3	9.7	9.3	8.5	17.5	16.4	13.7	14.4	13.5	10.9	12.4	12.6	12.8	14.1	17.6	14.4	16.2	25.7	17.8	17.3	14.7	11.5	10.5	8.3	24	25.7	6.3	13.6	0	0
15	5	7.5	7.6	7.6	5.7	5.9	7.1	8.1	11.3	9.6	13.8	15.7	14.1	9.9	10.7	9.8	18.6	23.2	19.3	15.5	14.7	11.1	11.5	8.9	6.7	24	23.2	5.7	11.4	0	0
16	6	5.9	4.7	4.3	3.8	4.8	5.9	7.7	10.7	9.0	16.7	22.3	28.7	28.6	6.4	5.5	5.0	5.4	4.6	4.0	3.8	4.7	4.4	2.7	2.8	24	28.7	2.7	8.4	0	0
17	7	2.6	5.2	7.7	6.1	2.7	2.7	3.9	6.3	6.6	5.7	7.2	12.3	8.3	6.2	7.0	13.1	18.8	24.6	19.4	21.0	16.9	15.0	11.5	10.7	24	24.6	2.6	10.1	0	0
18	В	11.2	11.8	9.6	7.9	6.2	8.7	11.1	12.7	13.9	14.1	8.2	10.3	11.1	15.3	12.2	14.5	12.8	21.0	17.9	17.5	22.2	15.8	10.0	8.4	24	22.2	6.2	12.7	0	0
19	9	13.8	16.2	11.7	9.4	8.2	6.9	6.7	13.7	7.2	7.0	12.9	8.7	6.8	6.8	8.2	9.1	11.0	8.9	7.4	6.1	3.8	3.5	3.4	4.2	24	16.2	3.4	8.4	0	0
20	0	4.5	6.8	10.6	11.5	7.8	5.1	2.4	2.4	2.3	2.3	2.3	2.3	2.3	2.4	2.3	2.3	2.4	2.5	2.6	2.5	2.5	2.5	2.5	2.5	24	11.5	2.3	3.7	0	0
2:	1	2.4	2.5 3.0	2.6 3.1	2.8 3.1	3.1 3.0	3.2	3.6 4.0	4.2 4.4	4.4 4.7	4.8 4.0	4.4 4.6	4.3 4.7	4.3 3.9	3.9 3.8	3.9 4.5	4.6 5.2	4.7 5.6	6.1 4.8	4.5 4.7	3.3 3.5	3.1 3.5	2.9 6.2	2.9 4.5	3.0 6.7	24 24	6.1 6.7	2.4 3.0	3.7 4.2	0	U
21	2	3.0 11.7	6.8	5.6	6.4	4.2	5.2	10.3	9.7	14.3	15.8	7.9	8.8	7.3	3.8 8.7	8.8	10.2	10.1	7.5	8.1	10.2	9.9	7.8	4.5 5.8	8.4	24	15.8	4.2	8.7	0	٥
24	4	8.0	10.6	10.1	7.0	6.3	8.1	7.9	7.6	7.7	11.5	9.0	9.8	11.8	10.1	8.2	9.0	8.9	7.6	6.8	7.5	7.1	6.1	8.2	12.1	24	12.1	6.1	8.6	0	ů
2!	5	6.2	6.7	10.5	8.2	6.7	8.6	10.0	11.2	11.1	11.8	11.5	16.6	17.0	18.0	M	M	M	17.5	10.0	6.0	12.4	9.1	7.4	7.8	21	18.0	6.0	10.7	0	ő
26	6	9.0	10.1	8.0	6.7	5.1	4.0	3.1	3.7	8.5	5.0	2.6	0.8	0.0	0.1	0.0	1.2	2.1	2.8	3.9	2.3	2.3	3.4	2.5	1.4	24	10.1	0.0	3.7	ō	0
27	7	3.0	4.8	2.7	2.4	2.5	3.6	2.6	1.8	1.8	1.4	2.5	0.6	2.1	0.1	0.0	0.0	0.1	0.5	1.8	3.3	4.1	3.0	4.0	5.4	24	5.4	0.0	2.3	0	0
28	В	4.3	10.5	5.9	3.3	4.3	4.1	4.6	7.3	7.8	5.5	3.1	1.5	2.2	3.6	3.2	4.0	4.6	4.1	3.5	5.2	3.0	3.9	7.5	4.5	24	10.5	1.5	4.6	0	o
29	9	4.1	5.2	13.7	12.4	9.5	4.9	5.1	7.2	12.0	18.5	4.4	5.5	7.8	9.3	8.5	6.9	8.0	10.1	12.6	12.5	20.5	9.9	9.0	8.4	24	20.5	4.1	9.4	0	0
30	0	12.6	11.2	9.9	7.0	6.7	6.3	8.5	6.3	6.8	10.7	5.0	4.5	5.0	7.2	8.4	11.7	7.9	12.8	13.3	13.2	16.7	17.0	14.2	24.6	24	24.6	4.5	10.3	0	0
Count	•	30	30	30	30	30	30	30	29	29	29	29	29	29	30	29	29	29	30	30	30	30	30	30	30	711				U	- 0
Maximum		21.1	16.2	16.5	12.4	17.5	16.4	14.0	16.3	15.6	18.5	22.3	28.7	28.6	18.0	17.6	18.9	23.2	25.7	19.4	21.0	22.2	17.0	14.2	24.6	24					
Minimum		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18					
Average		5.9	6.1	5.5	4.6	4.8	5.1	5.4	6.7	6.8	7.5	6.4	6.2	6.0	5.6	5.4	6.6	7.2	8.9	7.1	7.2	7.2	6.4	6.1	6.3						
Percentile	s		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly		28.7
Data			0.0		1.9		3.1		4.2		5.1		6.7		7.9		10.1		13.6		16.5		22.1		28.7				num Daily y Average		13.6 6.3
Notes		C -	Calibration	/ Span Cyc	le NA	- No Data	Available	T -	Test	A	- MOE Audit	М	- Equipme	nt Malfunct	ion / Down	R-	Rate of Ch	nange													

Day	14.0 9.6	100								Dei																				
Day 1 2	0 14.0										cember pb)		2016																	
Day 1 2	14.0									(P)	/																			
1 2			200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count M	aximum M	linimum	Average	Hrs>200	Days>100
2	9.6	11.0	9.6	5.7	6.6	10.0	12.1	11.1	8.8	6.5	5.9	4.9	5.3	6.3	6.7	7.2	8.7	8.5	9.2	9.1	7.7	7.0	7.5	8.0	24	14.0	4.9	8.2	0	0
		7.1	3.9	1.4	2.4	1.1	5.5	10.3	11.5	7.8	4.1	1.9	2.9	1.3	1.2	3.2	1.5	1.1	1.3	1.1	0.7	1.7	1.9	2.7	24	11.5	0.7	3.6	0	0
3	1.0	0.0	0.0	1.1	1.6	6.4	2.8	4.1	1.8	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.3	1.8	1.9	1.4	0.1	0.2	0.2	0.5	24	6.4	0.0	1.1	0	01
4	1.1	1.9	2.1 1.2	0.1	0.0	0.0	0.0 7.9	0.6 11.8	0.9 23.2	0.1	0.0	3.0 7.8	0.8 6.0	1.7 3.6	4.4 3.2	1.2 6.2	0.2	3.6 13.4	3.8 15.4	1.9 19.2	5.7 23.7	1.8 26.1	2.3 17.0	4.7 11.5	24	5.7 26.1	0.0 1.1	1.7 10.6	0	01
5	3.5 9.3	1.1 5.6	9.9	1.1 6.1	2.5 6.6	9.0 7.4	6.6	12.7	11.8	19.1 7.1	12.5 9.8	7.0	3.4	3.0	2.7	2.3	9.2 5.9	3.6	3.9	4.3	7.5	7.9	3.8	4.0	24 24	12.7	2.3	6.3	0	0
7	4.6	4.7	5.3	5.9	6.8	12.2	12.5	17.4	21.1	10.0	8.5	6.7	5.1	7.7	9.5	9.6	9.3	9.5	9.8	8.2	10.9	9.5	12.0	16.5	24	21.1	4.6	9.7	0	0
8	15.0	12.2	10.7	9.3	7.9	7.7	8.1	11.6	10.7	12.7	3.4	6.4	4.1	3.9	3.0	5.5	7.5	7.6	7.6	8.4	8.3	6.7	0.4	0.1	24	15.0	0.1	7.5	0	0
9	2.1	3.4	2.4	2.4	2.5	0.5	0.5	2.2	6.1	3.3	0.7	0.9	0.3	0.9	1.7	0.4	0.4	0.0	0.4	0.2	0.0	0.0	0.0	0.0	24	6.1	0.0	1.3	0	0
10	0.0	0.0	0.0	0.0	1.5	0.8	0.7	1.5	2.0	2.9	7.3	7.3	8.3	4.8	3.7	3.6	4.1	4.5	8.4	14.4	15.4	17.6	10.1	11.6	24	17.6	0.0	5.4	0	0
11	19.4	16.7	10.1	8.7	7.9	5.2	5.6	10.2	7.4	6.6	7.8	11.8	7.3	4.5	3.8	8.7	5.9	8.1	5.7	4.6	9.2	4.1	3.0	3.0	24	19.4	3.0	7.7	0	0
12	3.4	4.2	2.3	3.0	3.9	5.3	7.0	17.4	22.1	12.2	8.3	8.4	8.9	5.8	С	С	С	12.4	14.7	15.4	23.5	14.8	11.8	9.3	21	23.5	2.3	10.2	0	0
13	10.9	11.9	9.9	12.0	13.0	13.8	9.8	20.5	8.3	7.3	6.5	6.8	Α	9.7	11.6	10.8	19.9	16.7	18.2	14.3	10.7	9.7	8.1	3.6	23	20.5	3.6	11.5	0	0
14	8.4	8.8	8.8	4.4	6.2	7.9	7.2	9.7	8.6	7.2	5.8	7.2	7.6	7.7	7.0	8.0	8.0	8.3	9.2	11.3	9.3	12.9	13.3	5.5	24	13.3	4.4	8.3	0	01
15	5.5	6.3 1.1	7.1 0.8	6.6 0.5	5.2	0.8 8.9	0.7 5.2	2.4 4.3	6.8 11.4	11.6 9.7	10.4	8.7 15.7	8.0 9.7	3.9 12.0	2.3 15.5	2.7 21.5	3.8	3.3 26.6	1.6 24.7	1.0 30.3	0.6 25.7	0.7 5.6	1.2 6.2	1.4 5.0	24 24	11.6 30.3	0.6 0.5	4.3 11.7	0	01
10	2.5 5.0	4.7	13.9	3.4	2.4 3.0	3.3	3.5	3.9	3.1	4.8	8.9 6.6	5.2	5.1	5.5	7.1	9.6	26.4 8.0	7.5	24.7 M	30.3 M	25.7 M	4.3	7.8	10.1	24	13.9	3.0	6.0	0	0
19	18.0	20.4	13.5	8.0	6.6	5.2	5.3	3.5	2.3	1.9	1.4	1.1	1.2	1.3	0.7	0.8	1.1	1.8	3.3	4.3	2.3	0.6	1.4	2.6	24	20.4	0.6	4.5	0	0
19	3.1	3.4	5.1	5.5	5.3	3.9	2.7	7.8	12.1	18.3	18.0	12.2	8.1	10.1	12.4	16.4	9.9	8.0	8.0	17.4	22.4	10.1	13.3	12.4	24	22.4	2.7	10.3	0	0
20	6.6	5.6	9.1	13.5	12.6	15.0	12.8	13.8	10.9	12.1	9.0	6.5	7.5	5.8	5.2	6.5	6.4	6.8	9.3	11.3	16.4	17.4	14.2	14.4	24	17.4	5.2	10.4	0	0
21	13.0	12.6	13.3	14.5	15.0	16.9	20.5	29.4	24.6	17.8	15.7	14.6	15.5	21.4	24.6	21.2	21.3	18.9	23.1	15.7	21.0	30.3	25.8	24.3	24	30.3	12.6	19.6	0	0
22	28.2	31.0	24.1	9.8	9.8	10.6	12.9	24.3	26.1	24.5	22.1	21.2	21.2	13.7	10.8	12.0	9.7	7.7	9.0	11.5	13.4	22.0	19.4	11.3	24	31.0	7.7	16.9	0	0
23	6.6	7.4	8.3	7.0	8.5	11.0	15.0	19.4	15.6	17.4	15.9	11.6	9.1	9.4	8.5	10.5	14.0	12.8	7.8	8.6	9.4	9.6	16.2	14.8	24	19.4	6.6	11.4	0	0
24	18.6	17.8	10.7	9.9	8.5	10.8	8.8	10.2	15.2	12.0	13.7	10.3	6.1	5.2	6.8	10.9	14.8	9.4	6.9	6.3	4.4	8.7	7.2	9.0	24	18.6	4.4	10.1	0	0
25	11.6	15.2	13.7	14.9	7.0	1.5	1.2	1.1	1.0	1.0	1.0	0.7	0.6	0.6	0.8	0.8	1.4	7.0	3.6	1.3	1.0	2.8	6.3	1.1	24	15.2	0.6	4.1	0	0
26 27	1.0	1.0 3.5	1.1 3.5	1.1 2.8	1.7	2.5	2.6 1.7	3.2 2.1	2.5 4.0	4.7	4.1	13.2 3.5	8.0 2.6	5.7 4.0	6.4 3.3	9.7 2.5	9.4	11.5 3.0	14.6 2.6	7.7 2.2	8.3 2.1	6.7 1.9	4.0 2.6	4.7 5.7	24 24	14.6 5.8	1.0 1.7	5.6 3.2	0	01
27	4.1 5.8	3.5 4.6	3.1	3.2	4.1 3.4	3.0 4.8	7.0	5.4	5.3	3.9 8.2	5.8 5.3	2.4	2.0	3.8	5.5	7.6	2.5 9.3	5.9	4.7	7.7	7.5	5.8	6.7	5.6	24	9.3	2.1	5.4	0	0
29	4.9	5.6	3.8	6.2	5.4	5.6	4.4	4.6	5.7	7.2	8.3	14.5	16.3	12.5	14.2	11.5	14.9	13.5	10.2	16.3	12.8	6.6	11.3	17.0	24	17.0	3.8	9.7	0	0
30	9.0	10.5	5.5	6.0	2.6	1.2	1.3	1.2	1.5	1.1	1.0	0.7	0.5	0.6	0.8	1.8	3.2	2.0	3.5	3.0	5.3	8.5	13.1	6.0	24	13.1	0.5	3.7	0	0
31	5.8	7.5	7.4	6.8	4.1	3.4	2.4	6.1	2.7	2.5	3.3	3.4	6.0	4.1	4.4	4.3	4.0	4.1	3.3	3.3	2.8	3.8	3.2	2.8	24	7.5	2.4	4.2	0	0
Count	31	31	31	31	31	31	31	31	31	31	31	31	30	31	30	30	30	31	30	30	30	31	31	31	737					
Maximum	28.2	31.0	24.1	14.9	15.0	16.9	20.5	29.4	26.1	24.5	22.1	21.2	21.2	21.4	24.6	21.5	26.4	26.6	24.7	30.3	25.7	30.3	25.8	24.3	24					I.
Minimum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.9	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.4	0.2	0.0	0.0	0.0	0.0	21					
Average	8.1	8.0	7.1	5.8	5.6	6.3	6.3	9.2	9.5	8.5	7.5	7.3	6.3	5.8	6.3	7.2	8.0	8.0	8.2	8.7	9.6	8.6	8.1	7.4						
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	m Hourly		31.0
Data		1.0		2.3		3.5		5.1		6.5		7.9		9.4		11.8		15.5		20.0		26.1		31.0			Maxim	um Daily Average		19.6 7.6
Notes		- Calibration	/Snan Cu		A - No Data		т	Test	Λ.	MOE Audit			nt Malfunct		В	Rate of Ch	nange							21.0						

Figure C-1 Time History Plots of Measured Hourly Average and 24 Hour Average NO₂ Concentrations – Courtice (WPCP) Station

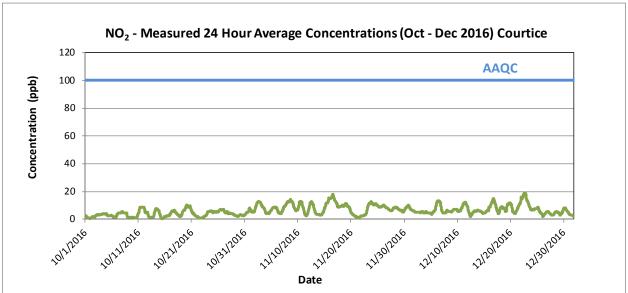
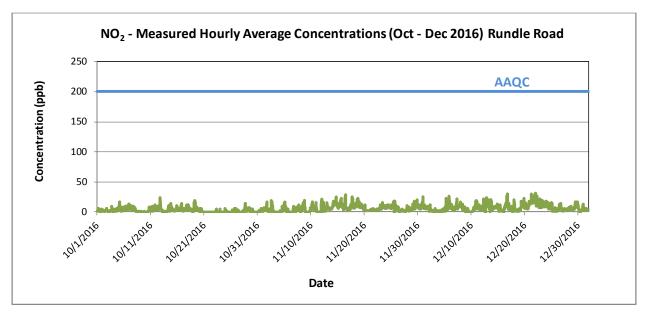
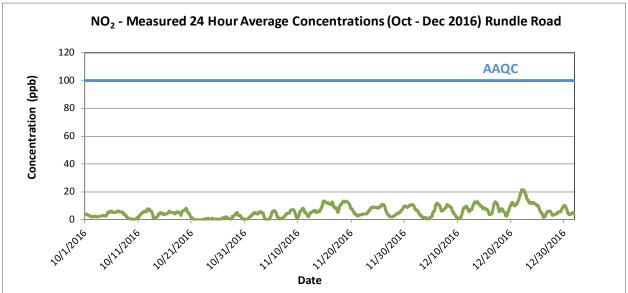




Figure C-2 Time History Plots of Measured Hourly Average and 24 Hour Average NO₂ Concentrations – Rundle Road Station

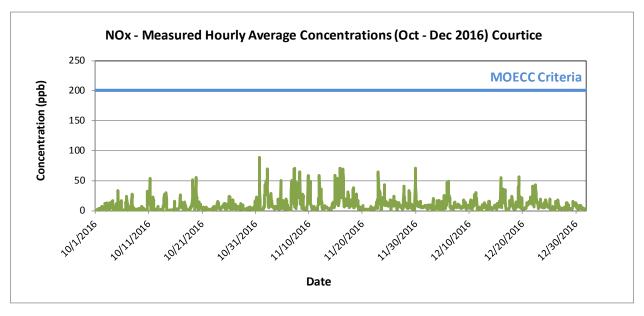
Appendix D NOX Data Summaries and Time History Plots February 8, 2017

Appendix D NO_X DATA SUMMARIES AND TIME HISTORY PLOTS

Project No.: 160950528 D.1

											tober	URTICE	2016																
Dav	Hour 0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200 Days>100
Day 1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.0	0.0	1.8	0.8	1.0	0.9	1.1	2.0	3.8	2.5	2.4	3.4	3.0	3.8	24	3.8	0.0	1.1	0 0
2	2.0	3.6	4.8	1.0	3.6	6.4	6.8	7.4	3.9	3.0	0.9	0.4	0.0	0.2	0.0	0.0	0.0	0.2	0.6	2.8	11.4	9.5	6.4	12.3	24	12.3	0.0	3.6	0 0
3	4.8	5.4	8.2	8.1	7.2	6.2	11.2	12.9	2.6	3.7	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3	13.6	13.6	10.8	4.7	6.9	24	13.6	0.0	5.1	0 0
4	4.8	6.9	8.9	8.5	12.3	15.6	16.7	14.7	6.8	3.4	1.2	0.0	0.0	0.0	0.0	0.0	0.6	2.3	2.9	3.4	3.7	8.9	12.5	6.5	24	16.7	0.0	5.9	0 0
5	2.4	0.8	3.7	0.8	0.1	0.4	10.6	33.6	0.7	0.1	0.0	0.0	0.0	0.0	0.0	0.1	2.4	4.2	2.3	2.5	11.7	16.9	0.9	0.5	24	33.6	0.0	3.9	0 0
6	0.0	0.5 7.3	0.5 10.5	0.0 7.0	0.3 3.4	0.5 2.5	0.7	1.1 6.7	1.0	1.1 0.8	1.4 0.7	1.1 0.6	1.1 0.3	0.3 0.1	0.4	0.4	0.0 0.4	0.4 1.3	7.3 4.7	15.0 5.2	1.6 17.2	20.4 27.3	23.6 22.1	14.9 26.8	24 24	23.6 27.3	0.0 0.0	3.9 6.7	0 0
,	8.7 12.4	2.3	0.8	0.2	1.7	5.0	6.1 3.5	3.1	1.7	2.1	0.7	0.0	0.0	0.0	0.0	1.6	0.4	1.8	2.3	2.6	1.2	3.0	2.6	2.3	24	12.4	0.0	2.2	0 0
9	2.4	2.6	3.7	3.9	1.7	2.2	4.1	2.6	0.2	0.2	0.0	0.0	0.2	0.0	0.0	0.9	4.1	1.1	6.6	4.5	3.2	2.5	2.1	4.5	24	6.6	0.0	2.2	0 0
10	1.8	1.4	2.3	3.4	0.4	0.7	2.8	3.0	0.9	0.6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.7	32.6	21.1	23.1	22.6	15.3	24	32.6	0.0	6.4	0 0
11	13.2	10.9	11.4	18.5	21.3	26.8	54.1	43.8	20.6	1.3	1.2	0.2	0.0	0.0	0.0	0.4	1.8	3.5	13.1	23.2	18.9	12.8	18.1	15.0	24	54.1	0.0	13.8	0 0
12	10.4	2.8	1.5	0.8	1.7	1.3	1.2	1.5	2.1	2.4	2.4	2.1	2.3	2.9	1.4	1.7	2.8	4.2	6.8	1.8	1.3	1.7	0.8	1.1	24	10.4	0.8	2.5	0 0
13	0.8	0.8	0.8	0.1	1.8	1.6	1.5	C	C	2.8	2.0	1.9	1.6	1.7	2.4	1.7	2.6	3.6	6.1	8.7	6.6	10.3	20.2	27.0	22	27.0	0.1	4.8	0 0
14	21.6	23.9	16.6	25.1	24.1	17.4	22.1	29.8	19.3	0.8	0.1	0.0	0.0	0.0	0.1	0.3	0.0	0.3 3.9	0.0	0.5	0.4	0.6	0.9	0.6	24	29.8 15.5	0.0	8.5	0 0
15	0.6 2.8	0.8 2.3	0.5 1.2	0.6 1.1	1.2 0.8	1.2 1.1	1.4 1.6	1.3 1.4	1.0 2.0	1.2 1.8	1.2 2.0	1.2 1.9	1.1 1.9	1.5 1.9	1.3 2.0	0.7 4.7	0.9 4.6	5.3	3.3 5.0	2.3 4.9	5.6 6.5	15.5 6.9	6.1 26.0	3.9 20.1	24 24	26.0	0.5 0.8	2.4 4.6	0 0
17	7.8	6.0	8.1	9.3	10.4	6.0	10.9	13.9	11.5	8.3	3.3	2.9	3.0	2.9	3.2	1.6	4.0	14.7	14.4	10.8	7.8	3.8	3.6	9.8	24	14.7	1.6	7.4	0 0
18	5.1	3.7	2.6	1.6	1.9	1.3	1.2	1.0	1.2	1.0	1.3	1.0	1.0	1.4	1.0	1.7	2.1	1.7	3.0	6.3	4.2	5.9	6.0	5.5	24	6.3	1.0	2.6	0 0
19	4.7	5.5	10.7	7.0	9.8	21.4	47.1	51.9	17.9	13.3	9.9	8.8	14.0	11.7	7.7	3.5	1.4	1.0	6.1	25.6	29.4	44.5	54.6	29.6	24	54.6	1.0	18.2	0 0
20	20.1	22.0	15.2	13.6	13.3	9.4	15.4	2.5	1.4	1.5	8.3	14.1	6.5	7.6	7.5	7.0	7.1	8.5	11.0	5.0	4.7	3.6	4.3	3.1	24	22.0	1.4	8.9	0 0
21	4.9	4.1	1.7	2.8	3.2	3.6	6.6	5.6	5.2	3.0	3.4	3.2	4.1	3.7	3.7	3.2	4.1	3.5	6.0	2.6	2.2	4.0	1.9	1.8	24	6.6	1.7	3.7	0 0
22	1.9	0.7	1.3	2.9	0.6 5.8	0.9	2.0	2.2	1.2 7.3	1.4	0.9	1.1	0.9	0.7	1.8	1.4	1.2	1.5	2.3	2.4	4.0	2.4	2.2	3.6 15.8	24	4.0	0.6	1.7	0 0
23	3.4 15.8	2.1 10.2	2.3 13.3	3.4 6.1	6.2	3.5 3.9	4.3 7.4	6.0 4.0	4.3	2.1 4.3	1.9 3.6	1.7 2.6	1.2 3.1	1.4 2.8	1.7 3.8	3.0 5.0	3.1 4.7	7.4 5.6	6.9 5.8	8.6 4.3	12.5 6.3	12.2 8.1	12.0 8.5	7.2	24 24	15.8 15.8	1.2 2.6	5.4 6.1	0 0
25	8.7	6.7	8.5	12.1	10.8	8.9	12.6	12.5	4.2	2.7	2.7	1.9	1.7	2.3	2.8	3.3	3.7	7.2	11.3	5.6	6.3	10.0	9.4	4.6	24	12.6	1.7	6.7	0 0
26	4.4	7.6	23.4	15.4	17.3	14.5	22.2	14.9	11.9	4.2	2.4	1.6	0.7	1.6	1.7	2.0	0.6	1.3	12.8	17.5	12.2	8.3	4.9	6.3	24	23.4	0.6	8.7	0 0
27	5.2	3.7	3.2	7.2	3.1	10.3	7.0	9.6	8.2	7.1	1.2	2.0	3.3	6.2	7.4	5.5	6.1	4.2	4.6	4.2	7.1	5.9	6.5	5.4	24	10.3	1.2	5.6	0 0
28	3.4	6.6	4.1	2.2	3.3	4.4	10.4	12.4	4.3	3.9	3.3	2.4	2.1	2.1	4.8	9.0	8.1	6.4	3.5	1.8	1.0	0.9	0.7	0.9	24	12.4	0.7	4.2	0 0
29	0.9	1.4	1.7	1.5	1.7	1.6	2.4	3.7	3.4	3.0	2.7	2.6	2.9	3.6	5.2	4.0	3.3	3.1	2.5	2.3	2.2	4.3	5.6	5.9	24	5.9	0.9	3.0	0 0
30	4.1	5.1	3.9	4.5	4.0	2.5	4.2	3.7	3.3	4.3	1.6	1.6	1.8	1.8	1.8	3.6	2.3	5.4	3.5	1.7	2.3	6.6	10.4	15.7	24	15.7	1.6	4.2	0 0
Count	9.0	7.5 31	12.8 31	18.4	10.6 31	11.3 31	19.6 31	23.3	12.9 30	4.0 31	1.7	1.9	2.7	1.9	2.6 31	1.7	2.5	12.9 31	88.0 31	37.2 31	17.1 31	14.7 31	13.1 31	3.5	742	88.0	1.7	13.8	0 0
Maximum	21.6	23.9	23.4	25.1	24.1	26.8	54.1	51.9	20.6	13.3	9.9	14.1	14.0	11.7	7.7	9.0	8.1	14.7	88.0	37.2	29.4	44.5	54.6	29.6	24				
Minimum	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.4	0.6	0.7	0.5	22				
Average	6.1	5.3	6.1	6.0	5.9	6.2	10.2	11.0	5.4	2.9	2.0	1.9	1.9	2.0	2.1	2.2	2.5	3.8	8.7	8.5	7.9	10.0	10.2	9.0					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				m Hourly	88.0 18.2
Data		0.3		1.0		1.6		2.3		3.1		4.1		6.0		8.6		14.4		20.6		35.8		88.0				y Average	5.7
Notes		- Calibratio	on / Span Cy	cle N	A - No Data	Available	T -	Test	A	- MOE Audit	М	- Equipmer	nt Malfunct	ion / Down	n R -	Rate of Ch	ange												

										No	NOx Covember	OURTICE	2016																
Н	our																												
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300		aximum N		Average	Hrs>200 Days>10
1	0.9	1.0	1.9	1.5	1.1	1.3	1.1	1.5	1.0	1.1	1.6	1.6	4.2	3.8	5.4	7.6	6.5	12.0	26.2	29.0	43.0	30.0	30.2	29.8	24	43.0	0.9	10.1	0
2	49.0 10.0	31.3 16.8	26.1 13.9	28.3 7.8	37.1 6.6	43.7 5.7	69.9 5.8	38.1 7.4	20.5 7.5	10.3 6.6	10.7 4.4	4.5 3.4	4.9 4.0	6.0 2.7	6.3 3.8	7.2 3.3	15.3 6.0	10.2 6.5	17.6 6.6	12.0 5.1	24.0 3.9	25.6 5.0	25.8 6.6	28.6 5.5	24 24	69.9 16.8	4.5 2.7	23.0 6.5	0
4	7.5	3.4	3.9	6.5	5.5	8.2	18.9	14.5	7.6	3.9	3.3	2.3	2.1	2.6	2.7	5.5	7.3	4.3	50.4	23.0	11.8	9.2	7.5	3.7	24	50.4	2.1	9.0	. 0
5	7.3	14.6	14.8	17.2	11.6	13.8	16.3	15.0	9.7	12.4	9.9	2.4	4.3	5.7	3.1	2.6	4.1	6.4	18.8	13.1	17.3	10.5	3.1	7.9	24	18.8	2.4	10.1	. 0
6	9.5	4.1	1.7	4.0	1.6	2.2	4.5	3.3	2.6	2.6	1.2	1.9	1.3	0.4	0.7	0.7	0.6	0.9	30.9	50.3	27.9	26.4	23.1	21.4	24	50.3	0.4	9.3	. 0
7	15.5	19.0	12.4	12.2	16.2	26.8	30.2	69.8	70.8	15.5	5.7	5.6	5.3	4.4	4.3	3.7	7.7	11.0	23.1	46.3	41.6	40.5	36.4	32.9	24	70.8	3.7	23.2	0 (
8	28.6	34.1	21.9	23.0	31.4	32.0	34.3	64.8	53.6	20.8	11.1	12.1	15.2	16.8	13.6	11.0	7.1	3.7	4.6	11.5	23.2	27.4	21.6	24.9	24	64.8	3.7	22.8	0
9	10.7	4.8	5.3	2.3	2.4	2.9	3.1	3.4	3.5	3.1	4.1	3.2	2.9	3.2	3.0	4.3	5.0	7.1	11.0	19.6	23.2	58.4	46.0	48.9	24	58.4	2.3	11.7	0 (
10	32.4	26.6	25.1	22.2	26.3	37.2	39.2	49.0	29.3	10.6	9.1	8.0	6.9	3.9	3.3	2.4	4.1	3.9	3.8	3.4	3.6	3.4	5.0	6.2	24	49.0	2.4	15.2	
11	5.2	7.1	2.5	1.9	1.8	4.0	2.4	3.4	2.8	2.3	2.6	3.0	2.3	2.6	3.0	2.7	2.8	7.2	11.1	20.4	17.4	16.2	11.0	40.8	24	40.8	1.8	7.4	
12	58.2	35.1	29.6	26.8	23.6	24.9	26.2	36.3	25.5	18.7	11.1	12.9	6.3	5.4	2.9	1.5	1.6	1.5	1.6	2.3	3.7	4.7	5.8	3.9	24	58.2	1.5	15.4	0 (
13	5.9	8.5 5.1	5.9 3.1	5.3 3.1	5.0 3.9	4.9 3.3	4.8 3.0	5.8 4.3	5.1 5.6	5.1 7.3	5.9	5.6	4.2 11.7	3.3 11.2	3.3 14.8	2.8 9.8	2.6	2.0 9.1	2.4 6.1	3.0 4.7	2.4 12.0	2.1	2.7 58.3	3.4 55.4	24	8.5 58.3	2.0 3.0	4.2	0
14	3.3 49.0	52.5	34.0	32.0	32.9	43.4	45.1	4.3 53.5	44.1	7.3 31.3	9.4 23.1	12.7 12.5	9.8	8.0	9.5	9.8 8.6	7.1 16.2	9.1 44.9	31.7	53.1	70.5	11.4 63.0	30.8	29.6	24 24	70.5	8.0	11.5 34.5	
16	29.9	28.8	23.2	21.3	24.1	30.8	37.8	43.7	51.9	56.4	69.3	54.2	53.1	18.8	6.3	12.2	7.2	7.0	7.6	12.0	10.4	11.9	10.1	11.6	24	69.3	6.3	26.7	. 0
17	10.1	10.2	20.7	14.6	19.2	8.7	11.6	19.7	31.0	24.7	25.3	26.8	14.7	7.0	6.1	4.7	8.6	15.1	10.9	11.5	7.6	12.5	17.9	14.1	24	31.0	4.7	14.7	0 1
18	10.8	10.9	14.3	18.1	16.9	16.5	19.4	34.6	38.7	15.6	7.6	5.2	5.1	6.1	5.8	9.7	12.0	14.7	14.2	13.7	15.6	22.1	27.7	22.8	24	38.7	5.1	15.8	0
19	15.6	14.9	7.8	7.8	9.4	16.2	11.2	5.8	2.4	3.2	4.7	2.9	3.6	4.6	4.5	5.7	5.5	4.7	3.8	4.4	2.4	2.4	2.2	3.4	24	16.2	2.2	6.2	
20	2.9	3.6	5.6	8.9	6.8	4.6	1.1	1.4	1.4	1.0	1.8	1.1	1.1	1.3	1.2	1.7	2.4	1.8	0.9	2.3	1.5	1.4	1.0	1.7	24	8.9	0.9	2.4	0 0
21	2.2	0.9	1.2	0.9	1.9	1.7	2.3	2.6	2.6	2.4	2.0	2.2	2.3	2.5	4.6	6.6	6.9	4.0	4.1	4.9	5.3	2.7	1.9	4.2	24	6.9	0.9	3.0	0 (
22	1.9	2.1	2.3	3.3	3.0	2.7	2.8	4.8	4.8	3.9	4.7	4.7	3.9	5.0	5.6	8.2	6.9	14.2	11.8	7.5	3.4	18.4	18.7	19.7	24	19.7	1.9	6.9	0 (
23	51.9	65.2	43.3	17.3	11.7	20.1	28.6	33.7	29.3	16.9	10.6	8.6	1.3	1.3	1.8	8.2	10.4	12.5	18.2	21.6	15.7	12.7	9.9	10.6	24	65.2	1.3	19.2	0 (
24	13.4	22.2	16.6	9.0	22.1	43.0	22.1	8.8	9.9	11.8	15.7	10.9	14.4	8.8	9.1	8.7	8.4	9.7	12.9	13.6	10.1	8.7	7.5	12.1	24	43.0	7.5	13.7	0 0
25	8.9 13.8	12.4 12.8	13.6 13.4	8.8 9.3	11.9 9.1	12.5 8.4	17.5 16.1	14.6 10.7	14.8	10.2	C 7.0	C 3.4	16.5 3.3	12.0 2.2	11.3 2.8	11.6 2.9	11.3	10.0 10.0	11.2 12.8	9.0 8.5	11.1 11.5	7.5 12.8	10.5 8.7	23.4 7.1	20 24	23.4 16.1	7.5	12.3	0 (
25	9.1	9.1	8.2	7.6	7.3	5.9	4.8	6.8	8.5	6.1	7.8 5.3	5.1	3.3	2.2	4.1	3.7	7.8 7.0	8.2	14.3	32.2	40.5	23.0	22.4	18.9	24	40.5	2.2 2.9	9.2 11.0	0 (
28	13.2	8.0	9.6	7.4	13.6	7.2	6.7	12.2	8.4	6.7	4.4	3.9	3.7	5.3	3.7	8.7	7.1	6.6	14.5	33.9	4.7	15.5	30.2	8.7	24	33.9	3.7	10.2	
29	7.1	10.9	6.8	5.3	4.9	7.0	4.4	8.2	10.3	6.0	2.1	3.6	5.1	4.1	3.1	2.1	2.6	2.2	2.6	2.8	3.1	16.8	47.4	48.8	24	48.8	2.1	9.0	0 0
30	70.7	45.2	23.6	12.3	9.5	14.0	15.9	14.7	7.2	7.8	9.4	11.2	6.7	9.3	12.6	9.5	10.1	8.1	14.1	7.0	5.9	8.0	15.6	9.4	24	70.7	5.9	14.9	0 (
Count	30	30	30	30	30	30	30	30	29	29	29	29	30	30	30	30	30	30	30	30	30	30	30	30	716				UC
Maximum	70.7	65.2	43.3	32.0	37.1	43.7	69.9	69.8	70.8	56.4	69.3	54.2	53.1	18.8	14.8	12.2	16.2	44.9	50.4	53.1	70.5	63.0	58.3	55.4	24				i
Minimum	0.9	0.9	1.2	0.9	1.1	1.3	1.1	1.4	1.0	1.0	1.2	1.1	1.1	0.4	0.7	0.7	0.6	0.9	0.9	2.3	1.5	1.4	1.0	1.7	20				i
Average	18.5	17.4	13.8	11.5	12.6	15.1	16.9	19.7	17.6	11.2	9.8	8.1	7.4	5.7	5.4	5.9	6.9	8.6	13.3	16.1	15.8	17.0	18.2	18.6					
Percentiles		10		20		30		40	·	50		60		70		80		90		95		99		100				m Hourly	70.8
Data		2.3		3.3		4.7		6.3		8.2		10.7		13.7		19.7		31.0		43.8		64.5		70.8				num Daily y Average	34. 13.
Notes	С	- Calibratio	n / Span Cy	cle N	A - No Data	Available	Т-	Test	A-	MOE Audit	t M	1 - Equipme	nt Malfunc	tion / Dow	1														


										De	NOx Control (Control	DURTICE	2016																
	lour 0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count Max	danson 84	la laccon	Augraga	Hrs>200 Days>100
Day 1	7.0	6.6	5.3	5.1	4.5	6.7	6.6	5.7	6.5	5.2	5.4	6.6	7.4	7.1	6.9	7.2	7.8	7.6	8.3	7.2	5.8	6.2	6.7	7.3	24	8.3	4.5	6.5	
2	7.9	5.3	4.3	3.0	4.1	3.0	5.5	7.1	7.9	9.3	6.0	3.2	3.1	3.8	4.5	4.6	6.8	8.4	10.1	7.8	4.6	6.2	5.0	6.7	24	10.1	3.0	5.8	0 0
3	6.5	4.5	3.1	2.7	5.3	9.9	8.5	19.9	13.4	5.7	2.1	1.6	1.8	2.3	1.8	2.4	4.3	4.1	5.5	5.5	3.3	6.3	7.3	10.8	24	19.9	1.6	5.8	0 0
4	17.2	17.4	9.0	5.8	3.4	5.2	4.1	6.3	3.7	4.4	16.4	4.3	0.5	0.2	0.7	0.9	4.0	7.9	1.7	5.2	11.1	5.9	6.4	11.7	24	17.4	0.2	6.4	0 0
5	15.1	5.2 22.6	1.6	0.9	1.2	1.2	0.9	9.3	20.7	25.1	20.8	7.4	7.2	4.4	4.0	4.7	8.0	10.2	8.1	9.8	15.8	47.0	33.9	32.7	24	47.0	0.9	12.3	
5	28.1 3.1	22.6	15.9 2.6	49.1 2.5	40.1 5.4	26.4 9.3	21.3 7.3	25.7 12.7	17.3 14.5	21.2 6.2	11.7 7.4	11.8 7.5	5.6 6.1	7.7 7.3	5.6 6.2	3.9 5.3	7.2 5.3	3.0 4.7	6.5 5.9	2.0 5.6	1.9 6.2	1.5 5.5	1.7 9.4	2.1 11.4	24 24	49.1 14.5	1.5 2.5	14.2 6.7	0 0
8	10.9	8.7	7.6	6.2	5.1	5.3	5.3	5.0	5.9	8.7	4.7	5.7	6.5	4.8	3.7	4.4	5.1	4.7	5.6	6.4	6.9	7.6	5.0	9.3	24	10.9	3.7	6.2	. 0
9	15.8	17.7	12.0	12.9	9.9	14.5	9.4	13.5	13.2	9.2	5.7	3.7	2.8	2.2	4.0	4.4	7.6	8.3	8.0	7.2	5.6	7.8	4.6	5.8	24	17.7	2.2	8.6	. 0 0
10	5.8	5.9	5.4	4.1	11.1	8.4	9.9	17.8	17.2	13.0	10.1	9.7	6.4	4.2	1.7	6.0	14.8	17.1	16.8	14.0	16.7	8.2	7.0	9.1	24	17.8	1.7	10.0	0 0
11	26.9	24.4	22.2	15.2	14.5	19.6	26.3	29.9	23.3	18.9	17.7	22.1	3.2	1.9	1.7	1.7	1.9	2.5	2.5	2.3	2.3	2.2	2.0	1.8	24	29.9	1.7	12.0	0 0
12	5.6	1.9	4.2	1.9	2.4	2.2	3.0	С	С	С	С	6.9	10.1	8.7	5.0	7.2	8.2	6.8	7.3	10.8	12.8	8.4	5.5	5.4	20	12.8	1.9	6.2	0 0
13	6.1	5.9	6.1	5.3	6.1	9.8	3.9	6.9	1.8	2.6	Α	Α	3.5	5.1	C	C	C	15.4	12.6	16.1	7.4	7.2	6.4	3.7	19	16.1	1.8	6.9	0 0
14	5.1	5.0 4.5	5.2 4.4	6.2 5.5	6.2 7.0	4.2 2.3	3.8 6.4	4.2 7.9	3.1 12.4	3.0 9.3	2.5 8.5	3.8 5.9	4.2 7.2	4.0 9.1	3.3 6.4	4.2 11.0	4.4	5.6 15.8	6.5 8.1	8.1 8.4	6.8 7.2	9.2 6.2	10.1 12.0	6.2 54.7	24 24	10.1 54.7	2.5 2.3	5.2 9.8	0 0
16	5.8 30.0	4.5 8.1	4.4	5.8	9.7	26.6	16.3	16.6	21.4	32.1	36.0	29.4	13.7	12.6	15.0	18.9	9.2 25.8	21.1	34.5	10.5	12.1	2.6	2.9	2.8	24	36.0	2.6	17.1	0 0
17	2.0	2.4	2.1	2.4	1.8	1.8	2.1	1.8	1.7	2.1	2.3	2.7	3.1	3.8	6.1	12.0	16.4	12.0	11.0	12.2	9.8	14.0	18.1	17.3	24	18.1	1.7	6.7	. 0 0
18	17.8	24.2	17.4	12.1	7.7	6.9	5.9	4.5	3.7	3.7	3.3	2.4	2.7	2.5	2.4	1.9	3.4	7.1	11.0	13.7	14.9	5.7	9.6	8.7	24	24.2	1.9	8.0	0 0
19	8.0	7.0	5.6	11.2	12.9	11.9	18.1	39.6	41.6	55.7	23.7	23.5	9.9	12.8	14.8	9.9	5.1	3.8	3.9	18.1	22.1	3.5	18.0	6.2	24	55.7	3.5	16.1	0 0
20	2.6	2.9	3.5	3.4	2.9	3.5	3.4	2.4	3.5	4.8	4.9	3.9	3.3	3.5	3.2	3.3	3.6	4.4	6.2	8.1	13.6	12.0	11.2	11.5	24	13.6	2.4	5.2	
21	9.7	9.4	9.5	10.9	11.6	12.4	13.5	15.1	15.9	13.6	15.2	13.2	15.5	22.8	17.9	12.7	12.8	13.2	17.1	11.0	15.9	19.1	31.9	41.3	24	41.3	9.4	15.9	0 0
22	36.8	41.0	26.7	5.8 4.6	7.1 6.0	7.1 7.7	9.1 10.8	26.6	32.1	33.2 19.6	42.7	41.0 10.6	38.1	29.9	19.5	20.5 7.2	15.8	15.2 6.4	15.5 4.9	13.4	14.5 5.0	12.3	12.9	4.6	24	42.7 19.6	4.6	21.7	0 0
23	3.6 7.4	5.0 10.7	4.5 13.1	5.1	4.4	4.7	6.8	11.3 11.1	11.5 17.5	12.7	16.6 16.0	14.9	7.8 10.5	6.6 7.8	6.3 10.3	10.2	9.1 9.7	9.4	7.7	4.5 7.1	5.4	5.6 4.8	6.0 4.8	5.4 6.2	24 24	17.5	3.6 4.4	7.8 9.1	0 0
25	7.9	9.0	9.8	19.8	10.3	3.3	2.5	2.2	2.4	2.0	3.4	2.0	2.0	1.5	1.5	1.7	2.5	6.9	7.1	2.6	2.6	3.5	2.3	2.0	24	19.8	1.5	4.6	. 0 0
26	3.4	1.6	1.7	1.5	6.6	6.6	13.7	15.7	9.9	9.1	4.4	4.4	5.1	6.0	8.0	9.0	17.7	10.8	11.1	4.7	7.2	4.7	1.9	1.5	24	17.7	1.5	6.9	0 0
27	2.0	2.4	2.4	2.6	2.4	5.2	2.5	2.7	2.7	3.1	4.1	3.7	2.9	3.1	4.2	3.7	5.0	5.2	4.9	3.6	5.0	4.4	4.0	2.6	24	5.2	2.0	3.5	0 0
28	3.7	5.8	4.7	4.3	5.6	8.0	10.8	12.8	11.0	13.5	10.5	3.3	3.0	6.8	8.2	10.1	8.0	2.0	1.8	2.4	1.6	2.3	3.2	1.9	24	13.5	1.6	6.1	0 0
29	1.7	2.0	2.3	2.4	2.5	2.7	2.8	3.4	3.0	3.6	6.2	15.3	15.9	11.6	12.8	9.9	10.9	10.8	13.7	9.1	10.2	8.1	8.5	11.4	24	15.9	1.7	7.5	0 0
30	12.8 3.6	13.5	7.3	10.9	4.7 2.2	3.3	4.1	6.3 2.0	5.6	3.2 4.5	3.2	2.2 3.4	2.8 2.6	3.1	3.5 2.4	4.4 2.3	7.9	6.3	4.8 2.8	4.7	3.6 2.2	7.1	8.0 3.9	3.8 3.5	24	13.5 4.5	2.2 1.4	5.7 2.9	0 0
Count 31	3.6	4.4	3.6	3.8	31	1.7	1.4	30	1.6 30	4.5	3.1	3.4	31	2.4	30	2.3	2.9	3.0	31	2.6	31	3.4	3.9	3.5	24 735	4.5	1.4	2.9	U0
Maximum	36.8	41.0	26.7	49.1	40.1	26.6	26.3	39.6	41.6	55.7	42.7	41.0	38.1	29.9	19.5	20.5	25.8	21.1	34.5	18.1	22.1	47.0	33.9	54.7	24				
Minimum	1.7	1.6	1.6	0.9	1.2	1.2	0.9	1.8	1.6	2.0	2.1	1.6	0.5	0.2	0.7	0.9	1.9	2.0	1.7	2.0	1.6	1.5	1.7	1.5	19				
Average	10.3	9.3	7.3	7.5	7.2	7.8	7.9	11.5	11.5	11.9	10.9	9.2	6.9	6.8	6.4	6.8	8.4	8.4	8.7	7.9	8.4	8.0	8.7	10.0					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				m Hourly	55.7
Data		2.3		3.2		4.2		5.2		6.2		7.4		9.7		12.6		17.3		23.8		41.0		55.7				um Daily Average	21.7 8.6
Notes	С	- Calibration	n / Span Cy	cle N	IA - No Data	Available	Т-	Test	A-	MOE Audit	: М	- Equipme	nt Malfunc	tion / Dowr	n R	Rate of C	hange												

											o	NOx Ru ctober pb)	ndle Road	2016																	
	Hour										(þ	pu)																		-	
Day		0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	Hrs>200	Days>100
1		5.2	2.6	6.4	9.2	8.6	9.5	3.4	2.5	2.2	2.2	4.3	2.2	3.4	1.4	1.7	1.3	1.5	6.9	2.2	10.5	5.6	5.7	2.0	1.4	24	10.5	1.3	4.2	0	0
2		1.8	4.4	3.4	2.3	2.4	4.0	2.6	3.7	3.6	3.0	3.4	2.5	2.8	3.5	3.2	3.8	3.5	4.0	8.0	4.8	3.6	2.3	4.0	3.1	24	8.0	1.8	3.5	0	0
3		2.2	2.1	1.7	1.3	1.4	2.0	3.5	5.4	6.1	3.1	6.0	5.1	4.0	2.4	2.4	2.6	4.2	12.5	10.3	5.5	4.5	7.4	7.0	1.6	24	12.5	1.3	4.3	0	0
4		1.1	9.0	1.7	1.9	2.0	2.7	6.1	7.7	9.3	4.6	2.9	2.0	2.4	2.4	2.8	2.2	11.2	2.7	4.4	5.0	4.3	4.5	8.0	8.0	24	11.2	1.1	4.5	0	01
5		13.6 6.4	5.3 4.2	3.5 5.0	3.2 5.2	12.5 6.7	20.2 8.5	14.9 10.7	15.5 12.2	16.8 6.1	8.8 5.4	2.6 4.2	2.0 6.5	13.6 3.7	2.3 3.5	3.4 4.4	5.5 3.8	2.8 3.8	5.3 11.4	6.1 9.4	8.0 10.9	9.6 12.8	13.1 7.3	8.0 5.2	7.1 22.8	24 24	20.2 22.8	2.0 3.5	8.5 7.5	0	0
-		5.3	5.1	11.0	6.4	5.4	7.7	10.7	16.2	9.8	5.4	3.8	3.4	7.3	6.3	3.5	3.5	4.4	8.5	9.4	7.0	10.7	6.9	7.5	8.6	24	16.2	3.4	7.5	0	0
,		3.8	12.0	4.2	3.8	3.7	5.5	1.1	1.1	1.0	1.3	1.4	1.0	1.7	2.3	2.1	1.5	1.4	1.3	1.4	1.7	1.6	1.8	1.7	1.8	24	12.0	1.0	2.5	0	0
9		2.0	1.7	1.6	1.2	1.1	1.2	1.4	0.8	0.8	0.8	0.6	0.7	0.5	0.6	0.6	0.9	0.6	0.7	1.5	2.2	1.5	1.1	0.8	1.0	24	2.2	0.5	1.1	0	0
10		0.9	0.8	0.9	1.2	0.6	0.5	0.8	0.8	1.0	0.7	1.2	1.4	1.8	2.3	3.0	2.2	2.4	5.4	13.2	7.3	8.5	4.1	2.6	2.9	24	13.2	0.5	2.8	0	0
11		2.5	2.9	2.3	2.5	4.0	8.0	14.5	13.0	15.2	5.0	11.0	2.7	8.7	14.4	9.8	5.5	4.6	8.0	10.3	15.5	5.5	5.2	7.9	6.2	24	15.5	2.3	7.7	0	0
12		3.9	7.9	6.1	6.2	8.1	11.9	8.0	8.0	10.4	6.9	6.6	15.1	5.9	5.7	6.5	13.9	12.7	15.3	19.9	25.0	7.8	9.3	6.3	5.1	24	25.0	3.9	9.7	0	0
13		4.7	3.8	4.5	5.0	1.7	1.2	2.5	3.3	2.0	C	С	C	1.5	1.6	1.4	1.7	1.3	1.3	1.9	1.7	1.1	1.7	2.9	1.0	21	5.0	1.0	2.3	0	0
14		1.1	1.1	1.5	1.6	2.1	1.9	5.0	7.6	21.6	7.6	8.1	6.0	3.8	2.4	2.1	2.1	3.5	13.3	15.7	7.9	7.9	5.5	16.3	4.1	24	21.6	1.1	6.2	0	0
15		8.4	7.8	3.9	4.2	4.5	4.9	4.4	5.4	4.0	4.6	2.9	2.4	2.5	4.7	3.2	3.4	5.0	3.6	3.5	6.9	7.4	7.1	15.2	10.6	24	15.2	2.4	5.4	0	0
16		8.7	9.2	6.0	2.6	2.3	2.8	5.7	3.7	4.5	4.1	3.9	4.8	8.5	5.9	8.6	9.2	4.6	6.0	11.0	14.9	15.3	9.2	5.4	5.0	24	15.3	2.3	6.7	0	01
1/		3.4 10.7	1.9 18.5	6.4 15.3	3.8 5.3	2.9 4.9	3.1 3.1	2.9 10.2	8.1 4.3	11.7 3.7	6.4 5.1	4.8 4.2	5.2 4.9	4.0 4.3	3.6 6.5	9.2 6.0	15.7 7.0	6.5 6.0	15.9 6.1	4.4 3.8	5.1 1.6	9.6 1.1	6.1 1.3	8.0 6.7	9.6 1.0	24 24	15.9 18.5	1.9 1.0	6.6 5.9	0	0
19		0.9	1.7	4.2	16.1	21.5	26.5	34.7	53.7	42.8	17.1	7.0	5.5	16.5	15.2	12.0	7.9	8.6	9.2	6.3	7.0	6.8	8.6	8.1	6.9	24	53.7	0.9	14.4	0	0
20		4.7	13.8	5.8	6.2	7.6	5.3	C C	C C	-12.0 C	C	,,o	C C	8.7	2.4	1.8	1.0	0.3	0.0	0.3	0.0	0.0	0.0	0.0	0.0	18	13.8	0.0	3.2	0	- 0
21		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.0	0.0	0.1	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24	0.3	0.0	0.0	0	0
22		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.5	0.2	24	0.5	0.0	0.1	0	0
23		0.1	0.0	0.3	0.1	2.2	0.7	2.3	7.6	2.2	0.4	0.0	0.0	0.0	0.2	0.1	0.0	0.5	0.7	0.7	2.1	1.8	1.4	1.5	1.6	24	7.6	0.0	1.1	0	0
24		6.2	2.4	1.2	0.0	0.0	0.0	0.8	2.4	1.2	1.1	1.1	0.6	1.7	1.8	3.8	2.0	1.0	1.0	0.8	0.5	0.5	0.5	6.2	7.8	24	7.8	0.0	1.9	0	0
25		1.3	0.6	0.8	0.6	0.3	1.8	5.1	2.4	0.5	0.0	0.6	0.2	0.0	0.0	0.1	0.1	1.1	1.5	0.7	0.0	0.0	0.0	0.2	0.0	24	5.1	0.0	0.7	0	0
26		0.0	0.0	1.7	0.0	2.0	1.9	3.4	4.3	6.9	1.2	0.6	0.4	1.4	4.5	3.9	2.0	3.0	4.5	7.9	7.2	7.3	1.4	13.8	1.4	24	13.8	0.0	3.4	0	0
27		2.0	6.0	1.4	2.0	1.7	3.1	3.7	8.5	3.2	2.8	6.7	3.9	2.0	2.8	2.3	1.6	1.2	0.8	1.2	1.0	1.6	1.8	1.8	1.9	24	8.5	0.8	2.7	0	0
28		0.4 4.4	0.7 3.7	0.4 7.6	0.0 2.3	0.4 3.0	0.2 3.4	3.3 9.2	4.8 9.3	1.2	1.1 9.4	0.5 8.7	0.7 5.7	1.4 5.7	2.0 7.8	7.8 10.0	10.6 8.1	12.5 1.1	21.8 0.6	12.7 0.3	11.4 0.3	4.6 0.5	3.5 0.6	3.4 0.7	3.3 1.2	24 24	21.8 10.7	0.0	4.5 4.8	0	0
20		3.6	5.9	4.0	5.4	2.7	0.0	0.5	0.5	0.3	0.2	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.5	24	5.9	0.0	1.0	0	0
31		0.0	0.0	0.0	0.3	0.6	1.1	3.2	6.4	3.3	1.1	0.8	0.7	1.2	0.5	1.3	4.3	7.4	9.2	6.7	7.3	6.6	6.0	5.0	7.1	24	9.2	0.0	3.3	0	0
Count		31	31	31	31	31	31	30	30	30	29	29	29	31	31	31	31	31	31	31	31	31	31	31	31	735					
Maximum		13.6	18.5	15.3	16.1	21.5	26.5	34.7	53.7	42.8	17.1	11.0	15.1	16.5	15.2	12.0	15.7	12.7	21.8	19.9	25.0	15.3	13.1	16.3	22.8	24					
Minimum		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18					
Average		3.5	4.4	3.6	3.2	3.8	4.6	5.8	7.3	6.7	3.8	3.4	3.0	3.9	3.5	3.8	4.0	3.8	5.7	5.6	5.8	4.8	4.0	5.1	4.3						ļ
Percentiles			10		20		30		40		50		60		70		80		90		95		99		100				um Hourly		53.7
Data			0.0		0.7		1.4		2.1		3.2		4.2		5.5		7.4		9.9		13.7		21.5		53.7				mum Daily ly Average		14.4 4.4
Notes		C - 1	Calibration	/ Span Cycle	e NA	A - No Data	Available	Т-	Test	A	- MOE Audit	М	- Equipmen	t Malfuncti	on / Down	R-	Rate of Ch	ange													

											NOx R	undle Roa	d																	
											vember		2016																	
										(р	pb)																			
	our																													
Day	3.2	100 6.0	200 3.2	300 5.5	9.2	500 10.4	600 9.5	700 12.2	800 8.5	900 6.6	1000 7.0	7.3	1200 6.3	1300 11.3	1400 10.1	1500 6.3	1600 8.2	1700 19.1	7.3	1900 7.4	2000 9.9	2100 5.7	2200 4.8	3.8	Count 24	Maximum 19.1	Minimum 3.2	Average 7.9	Hrs>200	Days>10
2	3.0	1.9	1.7	2.5	3.6	16.0	13.0	10.0	6.2	6.5	6.3	2.5	1.5	8.2	14.8	25.5	16.9	19.7	14.7	13.0	9.3	8.1	5.6	2.6	24	25.5	1.5	8.9	0	
3	4.8	0.9	1.2	0.3	0.2	0.6	1.0	1.5	1.9	2.3	1.4	0.9	0.5	0.8	0.8	0.6	0.5	0.7	0.3	0.3	0.2	0.0	0.0	0.0	24	4.8	0.0	0.9	o o	
4	0.0	0.1	0.2	0.0	0.5	0.6	5.0	4.4	2.1	2.2	1.5	1.1	2.2	2.5	2.9	6.3	11.9	10.5	8.1	8.5	5.2	9.2	12.5	7.8	24	12.5	0.0	4.4	o	
5	9.2	17.7	19.0	9.2	8.7	12.1	12.0	10.0	7.6	8.8	12.7	2.1	4.8	7.6	5.2	8.2	1.9	6.1	5.3	2.6	2.0	1.2	0.7	1.2	24	19.0	0.7	7.3	0	
6	1.3	0.2	0.0	0.0	0.1	0.0	0.2	0.4	1.2	0.3	0.0	4.0	1.9	1.3	3.3	4.9	4.7	15.4	5.2	5.3	5.1	4.7	3.1	2.0	24	15.4	0.0	2.7	0	
7	2.3	2.1	1.5	1.6	2.1	3.6	7.6	12.2	13.4	20.9	16.2	9.3	7.8	7.5	8.8	8.0	9.2	15.9	15.4	18.5	11.1	10.4	6.0	7.0	24	20.9	1.5	9.1	0	
8	3.4	2.1	2.8	2.3	2.1	5.0	8.0	12.8	10.9	23.8	13.9	14.6	20.7	21.4	20.6	21.2	19.7	9.8	10.1	22.5	11.3	9.4	8.3	5.4	24	23.8	2.1	11.8	0	(
9	1.7	1.5	1.5	1.0	0.5	0.6	0.5	1.5	1.3	1.3	1.3	1.1	1.4	1.2	1.0	2.4	2.1	2.6	2.3	3.3	5.1	9.8	13.2	9.4	24	13.2	0.5	2.8	0	(
10	7.2	7.5	6.6	10.2	16.5	16.6	20.9	31.5	32.7	16.4	15.5	12.4	10.6	10.4	8.1	7.9	8.3	8.2	7.6	7.6	9.6	12.9	15.5	19.3	24	32.7	6.6	13.3	0	
11	11.9	7.4	1.0	0.1	0.1	0.1	0.2	С	С	С	С	С	С	3.5	3.9	6.1	5.8	5.8	0.0	0.0	0.8	0.0	12.1	14.6	18	14.6	0.0	4.1	0	
12	35.8	5.5	0.0	0.0	6.5	8.5	2.3	6.7	18.2	28.2	13.1	15.1	5.9	5.0	1.8	1.0	1.0	1.8	2.1	2.0	4.2	6.6	7.0	6.1	24	35.8	0.0	7.7	0	
13	11.6	15.2	7.5	6.6	5.0	5.5	5.6	8.6	7.9	5.9	6.8	6.5	6.0	4.5	5.5	4.5	5.1	4.8	5.0	5.6	7.6	4.9	5.1	5.5	24	15.2	4.5	6.5	0	
14	6.7	10.2	9.8	8.6	18.5	17.7	16.9	19.0	20.8	16.6	21.6	21.0	19.7	22.3	26.1	17.8	16.8	33.8	18.5	19.0	15.0	12.0	11.9	8.8	24	33.8	6.7	17.0	0	
15	9.1	9.7	8.0	6.8	7.1	11.6	11.8	25.5	19.0	24.6	31.5	24.0	15.7	14.8	12.9	27.6	30.8	25.4	19.8	19.7	17.6	18.1	11.3	9.3	24	31.5	6.8	17.2	0	
16	7.3	5.5	4.8	5.1	5.6	7.6	10.7	20.0	19.2	47.2	47.4	66.0	71.3	7.2	6.6	5.2	6.1	5.2	4.5	4.3	4.9	4.9	3.3	3.3	24	71.3	3.3	15.6	0	
1/	3.0	7.2 17.8	9.9 10.4	8.0 9.1	3.9 7.4	3.9 9.6	6.0 15.5	11.0 17.2	11.5 26.3	9.5 28.3	13.6 11.5	27.8 16.3	14.8 15.8	9.6 23.0	9.8	16.7	22.1 13.3	40.4 22.1	25.4 19.2	30.6 22.5	19.4 32.4	16.6 16.2	12.5 10.2	11.2	24 24	40.4 32.4	3.0 7.4	14.4	0	
18	14.9 14.9	19.8	12.0	10.2	8.7	7.4	7.2	21.7	8.0	28.3 8.0	16.0	10.5	7.8	8.3	15.8 11.0	18.1 10.1	12.6	10.1	8.1	6.6	4.5	4.1	4.2	9.1 5.0	24	21.7	4.1	16.7 9.9	0	,
20	5.3	7.6	10.9	12.4	8.5	5.9	2.9	3.2	3.0	3.0	3.3	3.4	2.9	3.0	3.0	2.6	3.1	2.9	2.8	3.3	3.1	3.2	3.3	3.0	24	12.4	2.6	4.4	- 0	
21	2.8	2.7	3.0	3.0	3.5	3.7	4.3	5.4	5.4	6.5	5.4	5.2	5.7	4.9	4.7	5.5	5.3	6.8	4.8	3.3	3.3	3.3	3.1	3.3	24	6.8	2.7	4.4	o o	
22	3.3	3.3	3.1	3.3	3.4	3.3	4.7	5.1	6.0	4.8	6.1	5.8	4.7	4.6	5.3	5.6	6.3	4.8	5.1	3.5	3.5	6.4	4.5	12.8	24	12.8	3.1	5.0	o o	ì
23	17.4	6.8	5.6	6.5	4.2	5.6	16.4	14.2	19.5	21.6	9.6	11.5	8.0	9.5	10.0	10.7	10.1	7.5	8.1	10.2	9.9	7.8	5.8	9.7	24	21.6	4.2	10.2	0	
24	9.4	10.6	11.0	7.0	6.3	8.1	7.9	7.6	7.7	15.4	9.0	13.1	17.7	14.2	8.4	9.0	8.9	7.6	6.8	7.5	7.1	6.1	8.2	12.4	24	17.7	6.1	9.5	ō	
25	6.2	6.7	11.6	8.2	6.7	8.6	10.0	11.2	11.1	13.0	12.9	27.6	25.5	25.8	M	M	M	25.6	12.2	8.1	15.7	11.8	10.0	10.5	21	27.6	6.2	13.3	0	
26	11.5	12.7	11.0	9.6	7.9	6.8	5.6	6.2	14.9	9.5	6.2	3.5	2.5	3.1	3.0	4.3	5.1	5.8	7.0	5.2	4.9	6.1	5.2	3.8	24	14.9	2.5	6.7	0	
27	5.5	7.6	5.4	5.3	5.1	6.7	5.6	4.5	5.1	5.0	6.5	3.8	6.0	3.0	3.1	3.0	3.0	3.2	5.4	6.6	7.2	6.3	7.3	8.7	24	8.7	3.0	5.4	0	(
28	7.4	22.3	9.1	6.1	7.1	7.1	7.6	10.5	13.8	14.7	8.1	5.5	7.0	8.3	7.1	7.4	8.6	6.9	6.3	8.1	5.9	6.8	30.6	7.5	24	30.6	5.5	9.6	0	
29	7.2	12.3	28.2	17.4	13.7	7.9	8.1	12.2	15.8	31.3	7.8	9.6	12.3	13.6	13.0	10.4	11.2	13.3	15.8	15.9	26.4	16.0	15.5	15.7	24	31.3	7.2	14.6	0	(
30	25.7	19.7	14.2	9.9	9.5	9.1	11.6	9.3	12.4	17.7	8.7	8.5	8.7	18.9	14.4	15.2	10.5	15.3	16.6	16.3	21.6	22.4	17.3	32.8	24	32.8	8.5	15.3	0	(
31	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	30	711				0	(
Count Maximum	30 35.8	30 22.3	30 28.2	30 17.4	30 18.5	30 17.7	30 20.9	29 31.5	29 32.7	29 47.2	29 47.4	29 66.0	29 71.3	30 25.8	29 26.1	29 27.6	29 30.8	30 40.4	30 25.4	30 30.6	30 32.4	30 22.4	30 30.6	32.8	711 24					
Viaximum	0.0	0.1	0.0	0.0	0.1	0.0	0.2	0.4	1.2	0.3	0.0	0.9	0.5	0.8	0.8	0.6	0.5	0.7	0.0	0.0	0.2	0.0	0.0	0.0	18					
Average	8.4	8.4	7.1	5.9	6.1	7.0	8.0	10.9	11.4	13.8	11.1	11.7	10.9	9.3	8.3	9.4	9.3	11.9	9.0	9.6	9.5	8.4	8.6	8.4						
																										-	-			
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	um Hourly		71.
																												num Daily		17.2
Data		1.5		3.3		5.0		6.1		7.5		8.8		10.7		14.2		19.0		23.4		32.8		71.3			Month	y Average		9.2
lotes	С-	- Calibration	ı / Span Cv	cle NA	A - No Data	Available	Т-	- Test	Α	- MOE Audit	М	- Equipme	nt Malfunct	ion / Down	R-	Rate of Ch	nange							1						

No.																	ıd	undle Roa	NOx R											
No.																	2016													
1 175 143 127 92 110 147 192 175 151 134 132 143 141 156 169 150 050 051 053 76 053 47 49 44 41 52 59 56 24 199 91 91 91 91 91 91																			, p.u.,	(P									our	н
2 167 119 9 77 5.0 6.3 4.6 11.0 15.6 199 15.0 9.6 6.5 8.0 5.1 5.3 7.6 5.3 4.7 4.9 9.44 4.1 5.2 5.9 6.1 24 19.9 4.1 4 49 5.8 5.8 5.8 3.9 3.4 3.2 3.3 4.5 4.8 4.0 3.6 9.6 5.3 8.0 11.6 5.2 4.0 7.5 8.1 5.5 13.9 5.7 8.9 10.0 24 13.9 3.2 5 8 8.0 4.6 4.9 4.7 6.3 13.1 12.1 15.9 42.0 38.5 12.0 11.6 5.2 8.9 11.0 14.0 17.8 11.0 15.5 13.9 5.7 8.9 10.0 24 13.9 3.2 6 12.8 9.2 16.2 11.7 12.0 11.8 11.1 23.1 24.8 13.4 13.5 16.2 8.0 7.3 6.3 5.9 16.7 7.2 7.6 8.6 13.4 15.4 15.0 10.8 4.2 44 24.8 5.9 17.0 14.1 11.0 11.8 13.1 13.1 13.1 13.1 13.1 13.1 13.1																														Day
*** A *** A *** B		14.8 8.2												-																1
\$ 80 46 49 5.8 5.8 3.9 3.4 3.2 3.3 4.5 4.8 4.0 3.6 5.9 1.5 5.8 8.0 11.6 5.2 4.0 7.5 8.1 5.5 13.9 5.7 8.9 10.0 24 13.9 3.2 5.0 1.0 6 12.0 12.5 8.9 1.0 1.0 12.5 12.5 8.9 1.0 1.0 12.0 12.5 12.5 8.0 11.6 5.2 4.0 7.5 8.1 5.5 13.9 5.7 8.9 10.0 24 13.9 3.2 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0		4.7																												3
6 12.8 9.2 16.2 11.7 12.0 11.8 11.1 23.1 24.8 13.4 18.5 16.2 8.0 7.3 6.3 5.9 16.7 7.2 7.6 8.6 13.4 15.4 16.0 8.4 24 24.8 5.9 8.7 8.7 8.7 10.2 19.9 10.7 16.2 17.0 24.1 34.1 17.1 15.6 16.0 18.8 12.3 19.0 16.5 15.5 15.1 12.9 16.9 15.8 17.0 21.8 21.8 19.0 16.5 9.7 7.0 8.4 7.4 7.6 81 5.8 61 8.3 13.3 11.1 18.9 16.9 19.4 8.3 12.3 9.8 9.5 91 11.9 13.1 12.8 12.3 12.9 12.8 11.2 4.7 4.6 2.4 20.3 4.6 19.5 10.5 15.5 15.1 12.9 16.5 15.5 15.5 15.5 15.5 15.1 12.9 16.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5		6.3																												4
87 8.7 8.7 10.2 99 10.7 16.2 17.0 24.1 34.1 17.1 15.6 14.0 11.8 14.8 18.6 19.0 16.5 15.5 15.1 12.9 16.9 15.8 17.0 21.8 24 34.1 8.7 8.9 19.9 17.0 15.7 13.7 12.8 13.1 13.1 13.1 13.1 13.1 13.1 13.3 10.8 6.9 7.6 7.1 7.6 93 7.2 6.2 5.5 6.1 5.9 5.6 5.3 5.7 5.7 24 13.3 5.3 11.2 12.5 12.1 12.8 12.2 12.2 12.8 11.2 12.0 12.0 12.0 12.0 12.0 12.0 12.0	2 0	17.2	4.6	42.0	24	15.2	21.1	35.2		23.7			14.0	10.8	8.1	8.9	12.5	17.2	29.9	38.5	42.0		12.1	13.1	6.3	4.7	4.9	4.6	8.0	5
9 70 84 74 76 81 58 61 189 169 194 83 123 98 95 91 119 111 128 123 129 128 112 47 46 24 203 46 195 195 195 195 195 195 195 195 195 195		12.6																												6
10		15.9																												7
10		12.8 7.3												-																8
12 256 226 163 146 147 112 119 170 151 149 18A 238 151 119 111 175 131 159 12B 112 166 106 92 96 24 256 92 110 106 109 84 92 101 116 133 255 370 231 110 110 118 13 255 370 231 110 110 118 13 159 12B 112 166 106 92 96 24 256 92 13 110 110 118 13 12 159 110 118 13 159 12B 112 166 106 92 96 24 256 92 13 110 110 118 13 159 110 118 13 159 12B 115 157 778 15A 119 94 21 370 84 134 134 134 148 155 25 165 177 68 157 778 15A 119 94 157 84 148 159 159 159 159 159 159 159 159 159 159		11.8																												10
18 11.0 11.8 10.3 12.2 13.2 13.8 10.6 23.0 11.6 9.9 9.3 10.6 A 12.6 14.7 13.4 22.2 17.1 18.7 14.2 11.1 10.0 8.0 3.4 23 23.0 3.4 18.8 18.8 9.5 4.5 6.3 7.9 7.3 11.1 10.7 9.9 8.9 10.9 11.1 11.2 9.5 10.1 9.4 8.6 9.6 11.5 9.6 13.4 13.4 5.6 24 13.4 4.5 15 5.5 6.5 7.7 6.8 5.2 0.9 0.8 3.4 8.5 16.9 15.7 12.2 10.7 4.7 2.8 3.3 4.3 3.8 2.0 11.1 0.7 0.6 13.3 1.4 24 16.9 0.6 12.5 14.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		15.0	9.2	25.6	24	9.6	9.2	10.6	16.6	11.2	12.8	15.9	13.1	17.5	11.1	11.9	15.1	23.8	18.4	14.9	15.1	17.0	11.9	11.2	14.7	14.6	16.3	22.6	25.6	11
14 8.5 8.8 9.5 4.5 6.3 7.9 7.3 11.1 10.7 9.9 8.9 10.9 11.1 11.2 9.5 10.1 9.4 8.6 9.6 11.5 9.6 13.4 13.4 5.6 24 13.4 4.5 15.5 5.5 6.5 7.7 6.8 5.2 0.9 0.8 3.4 8.5 16.9 15.7 12.2 10.7 4.7 2.8 3.3 4.3 3.8 2.0 1.1 0.7 0.6 13. 1.4 24 16.9 0.6 16.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		16.6											-	C																12
15 5.5 6.5 7.7 6.8 5.2 0.9 0.8 3.4 8.5 16.9 15.7 12.2 10.7 4.7 2.8 3.3 4.3 3.8 2.0 1.1 0.7 0.6 1.3 1.4 24 16.9 0.6 16 2.5 1.4 0.7 0.5 2.5 3.4 3.0 3.6 3.8 4.3 3.3 3.3 3.3 3.3 3.4 3.8 2.0 3.1 2.4 7.2 7.0 5.4 2.4 3.1 0.5 17 5.3 5.4 2.2 2.3 3.4 3.0 3.6 3.8 4.3 3.3 3.3 3.3 3.3 3.4 2.8 5.8 3.1 3.4 3.4 3.5 3.5 3.5 2.4 2.0 3.8 3.3		12.7																												13
16 2.5 1.4 0.7 0.5 2.5 9.1 5.6 5.0 14.8 13.4 13.4 28.5 16.3 18.9 21.8 28.1 29.4 27.5 26.5 31.1 26.4 7.2 7.0 5.4 24 31.1 0.5 17. 5.3 5.4 24.2 3.4 3.0 3.6 3.8 4.3 3.3 5.3 10.4 7.2 6.2 6.5 83 14.7 8.2 7.6 M M M M 46 7.8 12.1 21 24.2 3.0 18 18.1 18.2 20.4 13.6 8.1 6.6 5.1 5.3 3.5 2.4 2.0 1.8 1.5 1.7 1.4 0.7 10 1.2 1.6 3.8 4.4 2.1 0.7 1.6 2.8 24 20.4 0.7 19 3.1 3.6 6.5 5.6 5.5 4.0 3.1 9.2 17.7 33.5 33.7 21.5 13.8 17.0 19.1 22.7 11.2 8.9 9.0 17.6 22.9 11.4 13.7 13.3 2.4 33.7 31.1 20.8 11.1 13.8 14.7 15.4 15.9 17.9 22.2 41.9 36.4 29.1 27.3 25.2 28.1 39.1 44.4 32.3 27.8 20.1 23.8 16.4 21.4 32.0 26.4 25.3 24 44.9 18.8 22.1 49.9 37.8 29.7 10.2 12.0 11.5 14.3 28.0 38.6 44.9 37.5 36.4 35.2 22.7 15.3 15.3 10.6 8.0 9.2 11.9 14.0 22.5 19.9 12.3 24 44.9 8.0 23.7 3.8 3.9 9.7 9 9.1 11.7 15.7 22.2 19.8 38.6 44.9 37.5 36.4 35.2 22.7 15.3 15.3 10.6 8.0 9.2 11.9 14.0 22.5 19.9 12.3 24 44.9 8.0 23.7 3.8 3.9 9.7 9 9.1 11.5 15.7 5.2 2.1 15.8 14.1 15.5 7.4 17.5 15.5 13.5 11.5 12.5 13.5 10.6 8.0 9.2 11.9 14.0 22.5 19.9 12.3 24 44.9 8.0 23.2 25.5 12.5 12.5 12.5 12.5 12.5 12.5 12		9.5 5.3												-																14
17 5.3 5.4 24.2 3.4 3.0 3.6 3.8 4.3 3.3 5.3 10.4 7.2 6.2 6.5 8.3 14.7 8.2 7.6 M M M M M 4.6 7.8 12.1 21 24.2 3.0 11.8 18.2 20.4 13.6 8.1 6.6 5.1 5.3 3.5 2.4 2.0 1.8 1.5 1.7 1.4 0.7 1.0 1.2 1.6 3.8 4.4 2.1 0.7 1.6 2.8 24 20.4 0.7 1.9 3.1 3.6 6.5 5.5 5.5 4.0 3.1 9.2 17.7 33.5 33.7 21.5 13.8 17.0 19.1 22.7 11.2 8.9 9.0 17.6 22.9 11.4 13.7 13.3 24 33.7 3.1 1.4 1.8 1.4 1.5 1.5 1.7 1.4 0.7 1.0 1.2 1.6 3.8 4.4 2.1 0.7 1.6 2.8 24 20.4 0.7 1.9 1.9 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0		14.3																												16
19 3.1 3.6 6.5 5.6 5.5 4.0 3.1 9.2 17.7 33.5 33.7 21.5 13.8 17.0 19.1 22.7 11.2 8.9 9.0 17.6 22.9 11.4 13.7 13.3 24 33.7 3.1 20 8.1 6.3 9.7 14.2 13.2 15.4 14.6 22.2 16.6 20.5 18.1 10.1 11.0 7.7 7.3 8.6 7.3 7.4 9.9 11.7 16.9 17.9 14.9 15.7 24 22.2 6.3 2.2 44.4 13.8 14.7 15.4 15.9 17.9 22.2 41.9 36.4 29.1 27.3 25.2 28.1 39.1 44.4 23.2 78 20.1 23.8 16.4 21.4 32.0 26.4 25.3 24 44.4 13.8 22.2 34.9 37.8 29.7 10.2 12.0 11.5 14.3 28.0 38.6 44.9 37.5 36.4 35.2 22.7 15.3 15.3 10.6 8.0 9.2 11.9 14.0 22.5 19.9 12.3 24 44.9 8.0 23.7 3.8 3.9 9.7 9 91. 11.7 15.7 22.2 19.8 49.9 37.5 36.4 35.2 27.7 15.3 15.3 10.6 8.0 9.2 11.9 14.0 22.5 19.9 12.3 24 44.9 8.0 23.7 3.8 3.9 9.7 9 91.1 11.5 15.7 22.2 19.8 13.8 10.6 8.0 9.2 11.9 14.0 12.5 19.9 12.3 24 44.9 8.0 24.0 14.0 11.3 13.2 13.3 13.3 13.3 13.1 13.1 13.1		7.4																												17
20 8.1 6.3 9.7 14.2 13.2 15.4 14.6 22.2 16.6 20.5 18.1 10.1 11.0 7.7 7.3 8.6 7.3 7.4 9.9 11.7 16.9 17.9 14.9 15.7 24 22.2 6.3 21 14.1 13.8 14.7 15.4 15.9 17.9 22.2 41.9 36.4 24.9 37.5 36.4 35.2 22.7 15.3 15.3 10.6 8.0 9.2 11.9 14.0 22.5 19.9 12.3 24 44.9 8.0 23 7.3 8.3 9.9 7.9 9.1 11.7 15.7 22.2 19.8 25.3 25.2 17.5 12.7 12.9 10.8 12.0 15.1 13.5 8.4 9.2 10.1 10.2 16.9 21.2 24 25.3 7.3 24 25.5 18.0 11.0 11.3 9.2 11.4 9.3 10.6 16.7 15.4 20.5 14.0 8.1 65 7.8 12.1 15.4 9.8 7.3 65. 47.9 2.7 7. 9.5 24 25.5 4.7 25.1 12.1 15.8 14.1 15.5 7.4 1.7 1.5 1.3 1.1 1.2 13.6 8.9 0.9 0.9 12.2 10.0 24. 10.3 66.1 11.2 11.6 14. 24 15.8 0.8 26.1 11.1 11.3 11.3 13. 20 5.2 3.0 3.9 2.7 7.2 51. 21.5 9.3 66.6 6.9 10.3 9.8 11.9 15.3 8.2 8.9 7.4 5.6 6.7 2.4 21.5 11.2 21.6 2.8 2.8 2.8 2.9 3.0 3.9 2.7 7.2 51.0 28.3 24.4 8.8 4.1 3.2 2.8 2.8 3.8 54.1 3.2 2.7 2.9 10.8 12.0 2.4 10.3 6.1 1.7 1.3 11.2 11.6 14. 24 15.8 0.8 2.8 2.7 2.9 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	7 0	4.7		20.4	24			0.7	2.1	4.4	3.8	1.6	1.2		0.7	1.4	1.7	1.5	1.8	2.0			5.3	5.1	6.6	8.1	13.6	20.4	18.2	18
21 14.1 13.8 14.7 15.4 15.9 17.9 22.2 41.9 36.4 29.1 27.3 25.2 28.1 39.1 44.4 32.3 27.8 20.1 23.8 16.4 21.4 32.0 26.4 25.3 24 44.4 13.8 22.5 24.9 37.8 29.7 10.2 12.0 11.5 14.3 28.0 38.6 44.9 37.5 36.4 35.2 22.7 15.3 15.3 15.3 10.6 8.0 9.2 11.9 14.0 22.5 19.9 12.3 24 44.9 38.0 24.5 3.7 3.8 24.5 24.9 24.5 3.8 24.5 24.9 24.5 25.8 25.3 25.2 17.5 12.7 12.9 10.8 12.0 15.1 13.5 84. 9.2 10.1 10.2 16.9 21.2 24. 25.3 7.3 24. 24.9 25.3 24. 24.9 24.9 25.3 25.2 17.5 12.7 12.9 10.8 12.0 15.1 13.5 84. 9.2 10.1 10.2 16.9 21.2 24. 25.3 7.3 24. 24.9 25.5 4.7 25.1 15.8 14.1 15.5 7.4 17. 15.7 13.5 11.5 15.4 20.5 14.0 8.1 65.7 7.8 12.1 15.4 9.8 7.3 6.5 4.7 9.2 7.7 9.5 24. 25.5 4.7 25.1 11.1 13.1 13.1 13.1 13.1 13.1 13.1 1		13.6										0.0																		19
22 349 378 297 102 12.0 11.5 14.3 28.0 38.6 44.9 37.5 36.4 35.2 22.7 15.3 15.3 16.8 0.9.2 11.9 14.0 22.5 19.9 12.3 24 44.9 8.0 22.5 19.8 12.3 7.3 8.3 9.9 7.9 9.1 11.7 15.7 22.2 19.8 25.3 12.5 14.0 8.1 65 7.8 12.1 15.4 9.8 7.3 6.5 4.7 9.2 7.7 9.5 24 25.5 4.7 12.9 10.8 12.0 15.1 13.5 8.4 9.2 10.1 10.2 16.9 21.2 24 25.3 7.3 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5		12.7 25.5																												20
73 83 99 79 91 11.7 15.7 22.2 19.8 25.3 25.2 17.5 12.7 12.9 10.8 12.0 15.1 13.5 8.4 9.2 10.1 10.2 16.9 21.2 24 25.3 7.3 24 25.5 18.0 11.0 11.3 9.2 11.4 9.3 10.6 16.7 15.4 20.5 14.0 8.1 6.5 7.8 12.1 15.4 9.8 7.3 6.5 4.7 9.2 7.7 9.5 24 25.5 4.7 25.1 11.1 13.1 13.1 13.1 13.1 13.1 13.1 1		22.2																												22
25 12.1 15.8 14.1 15.5 7.4 1.7 1.5 1.3 1.1 1.2 1.3 0.8 0.9 0.9 1.2 1.0 2.4 10.3 6.1 1.7 1.3 11.2 11.6 1.4 24 15.8 0.8 26 1.3 1.1 1.3 1.3 2.0 5.2 3.0 3.9 2.7 7.2 5.1 21.5 9.3 6.6 6.9 10.3 9.8 11.9 15.3 8.2 8.9 7.4 5.6 6.7 24 21.5 1.1 22 4.2 3.6 3.9 3.0 4.4 3.6 1.9 2.4 4.8 4.5 7.1 4.2 3.3 5.0 4.1 3.0 3.0 3.5 2.9 2.6 2.3 2.2 3.0 6.3 2.4 7.1 1.9 2.8 6.2 4.9 3.4 3.5 3.8 5.4 7.5 6.1 6.3 12.1 8.3 4.1 3.2 5.0 6.9 8.8 10.2 6.5 5.4 8.2 9.4 6.8 7.6 6.5 2.4 12.1 3.2 2.9 5.7 14.0 4.4 8.2 6.2 6.7 5.1 5.3 8.7 9.7 11.8 22.5 24.7 17.0 17.5 13.6 16.7 14.0 10.8 16.9 13.3 7.0 11.8 17.6 24 24.7 4.4 3.0 3.0 9.6 10.9 6.0 9.6 10.3 1.1 1.1 1.8 1.5 2.3 1.6 1.8 1.4 1.1 1.3 1.2 2.6 4.1 2.6 3.9 3.4 6.0 9.2 13.6 6.6 6.4 13.6 1.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3		13.9																												23
26 1.3 1.1 1.3 1.3 2.0 5.2 3.0 3.9 2.7 7.2 5.1 21.5 9.3 6.6 6.9 10.3 9.8 11.9 15.3 8.2 8.9 7.4 5.6 6.7 24 21.5 1.1 27 4.2 3.6 3.9 3.0 4.4 3.6 1.9 2.4 4.8 4.5 7.1 4.2 3.3 5.0 4.1 3.0 3.0 3.5 2.9 2.6 2.3 2.2 3.0 6.3 2.4 7.1 1.9 2.2 2.5 1.1 2.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	5 0	11.6	4.7	25.5	24	9.5	7.7	9.2	4.7	6.5	7.3	9.8	15.4	12.1	7.8	6.5	8.1	14.0	20.5	15.4	16.7	10.6	9.3	11.4	9.2	11.3	11.0	18.0	25.5	24
27 4.2 3.6 3.9 3.0 4.4 3.6 1.9 2.4 4.8 4.5 7.1 4.2 3.3 5.0 6.9 8.8 10.2 6.5 5.4 8.2 9.4 6.8 7.6 6.3 24 7.1 1.9 2 28 6.2 4.9 3.4 8.5 3.8 5.4 7.5 6.1 6.3 12.1 8.3 4.1 3.2 5.0 6.9 8.8 10.2 6.5 5.4 8.2 9.4 6.8 7.6 6.5 24 12.1 3.2 29 5.7 14.0 4.4 8.2 6.2 6.7 5.1 5.3 8.7 9.7 11.8 22.5 24.7 17.0 17.5 13.6 16.7 14.0 10.8 16.9 13.3 7.0 11.8 17.6 24 24.7 4.4 30 9.6 10.9 6.0 6.4 3.1 1.4 1.8 1.5 2.3 1.6 1.8 1.4 1.1 1.3 12.2 6 41. 2.6 3.9 3.4 6.0 9.2 13.6 6.6 24 13.6 11.6 1.8 16.1 8.0 7.7 7.3 4.5 3.7 2.9 10.0 3.2 3.3 4.4 4.9 11.6 5.8 6.2 5.7 4.6 4.7 3.8 3.5 3.3 4.3 3.6 3.0 2.4 11.6 2.9 Count 31 31 31 31 31 31 31 31 31 31 31 31 31		5.2																												25
28 62 4.9 3.4 3.5 3.8 5.4 7.5 6.1 6.3 12.1 8.3 4.1 3.2 5.0 6.9 8.8 10.2 6.5 5.4 8.2 9.4 6.8 7.6 6.5 24 12.1 3.2 2 29 5.7 14.0 4.4 8.2 6.2 6.7 5.1 5.3 8.7 9.7 11.8 22.5 24.7 17.0 17.5 13.6 16.7 14.0 10.8 16.9 13.3 7.0 11.8 17.6 24 24.7 4.4 30 9.6 10.9 6.0 6.4 3.1 14. 18 1.5 2.3 1.0 15.2 14.1 11.1 13.1 12.2 12.6 4.1 2.6 3.9 3.4 6.0 9.2 13.6 6.6 24 13.6 11.1 13.1 13.1 31 31 31 31 31 31 31 31 31 31 31 31 31		6.8																												26
29 5.7 14.0 4.4 8.2 6.2 6.7 5.1 5.3 8.7 9.7 11.8 22.5 24.7 17.0 17.5 13.6 16.7 14.0 10.8 16.9 13.3 7.0 11.8 17.6 24 24.7 4.4 3.9 1.1 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2		3.7 6.5																												27
30 9.6 10.9 6.0 6.4 3.1 1.4 1.8 1.5 2.3 1.6 1.8 1.4 1.1 1.3 1.2 2.6 4.1 2.6 3.9 3.4 6.0 9.2 13.6 6.6 24 13.6 1.1 1.1 1.5 1.3 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3		12.1																												29
Count 31 31 31 31 31 31 31 31 31 31 31 31 31		4.3																												30
Maximum 34.9 37.8 29.7 15.5 15.9 17.9 22.2 41.9 42.0 44.9 37.5 36.4 35.2 39.1 44.4 32.3 29.4 27.5 26.5 31.1 29.0 35.2 26.4 25.3 Minimum 1.3 1.1 0.7 0.5 2.0 0.9 0.8 1.3 0.8 0.9 0.9 0.7 1.0 1.2 1.6 2.0 1.1 0.7 0.6 1.3 1.4 21	3 0	5.3	2.9	11.6																										31
Minimum 1.3 1.1 0.7 0.5 2.0 0.9 0.8 1.3 1.1 1.2 1.3 0.8 0.9 0.9 0.7 1.0 1.2 1.6 2.0 1.1 0.7 0.6 1.3 1.4 21																														
Percentiles 10 20 30 40 50 60 70 80 90 95 99 100 Maximur						100		99		95		90		80		70		60		50		40		30		20		10		Percentiles
Maxim	'	num Daily y Average				44.9		37.7		25.8		21.1		15.9		13.5		11.3		9.4		7.6		6.0		4.6		3.0		Data
Notes C - Calibration / Span Cycle NA - No Data Available T - Test A- MOE Audit M - Equipment Malfunction / Down R - Rate of Change													hange	- Rate of (n P	tion / Dow	nt Malfunc	1 - Equipme	+ N	MOE Audi	^	Tost	т.	Available	A - No Data	rcle N	n / Snan Cı	- Calibratio		Notes

Figure D-1 Time History Plots of Measured Hourly Average and 24 Hour Average NO_X
Concentrations – Courtice (WPCP) Station

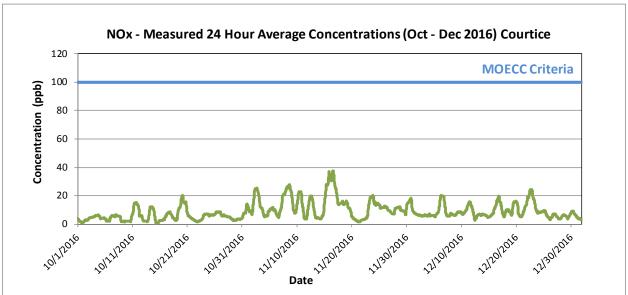
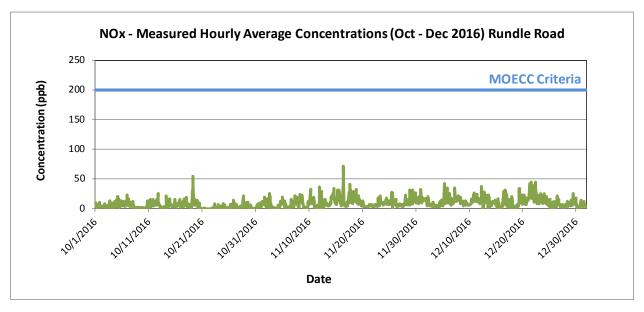
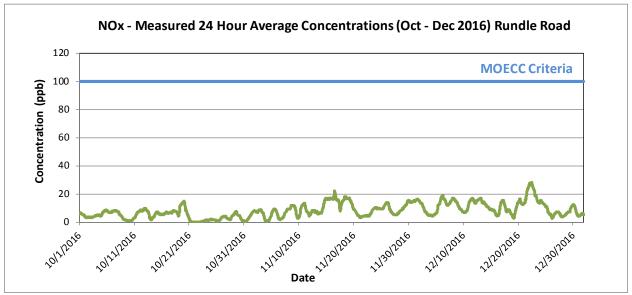




Figure D-2 Time History Plots of Measured Hourly Average and 24 Hour Average NO_x Concentrations – Rundle Road Station

Appendix E PM2.5 Data Summaries and Time History Plots February 8, 2017

Appendix E PM_{2.5} DATA SUMMARIES AND TIME HISTORY PLOTS

Project No.: 160950528 E.1

										0	M _{2.5} - CC ctober g/m³)	DURTICE	2016																
Day	Hour 0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	
1	1.7	1.4	1.0	0.9	0.8	0.7	0.7	0.7	0.8	0.9	1.0	0.8	0.7	0.6	0.9	1.1	1.0	1.1	1.4	1.6	1.7	1.5	1.4	1.1	24	1.7	0.6	1.1	
2	1.6	1.6	2.1	2.3	2.2	2.7	2.9	3.2	4.0	3.3	2.4	3.1	5.4	2.5	1.9	2.6	2.2	2.1	2.4	2.6	3.8	4.1	3.8	4.5	24	5.4	1.6	2.9	
3	5.8	6.3	5.8	5.3	3.4	2.2	2.8	2.4	1.3	0.9	0.8	0.9	0.9	1.1	1.1	1.4	2.0	1.7	1.8	2.5	3.7	2.4	1.7	1.7	24	6.3	0.8	2.5	
4	2.0	2.1	2.1	2.1	2.4	3.1	3.2	4.7	2.7	2.5	2.5	2.3	2.5	3.3	5.2	4.9	4.5	4.7	4.7	6.1	6.0	6.0	6.4	5.2	24	6.4	2.0	3.8	
5	4.5	4.2	4.9	4.7	5.7	6.3	7.0	7.5	3.9	3.9	3.7	3.5	3.4	3.2	3.3	3.3	3.9	4.4	5.1	4.8	5.3	4.6	3.0	3.1	24	7.5	3.0	4.5	
b 7	2.6 8.6	2.5 7.1	2.7 6.8	3.0 6.5	3.0 5.4	3.1 5.3	2.9 5.7	2.8 5.3	3.5 3.8	3.6 3.1	4.1 3.6	4.6 4.0	4.6 4.4	4.3 4.5	4.8 4.5	5.1 3.9	3.9 4.2	4.0 4.9	5.6 5.6	5.3 5.0	4.6 7.0	9.1 7.5	8.5 6.0	8.1 8.2	24 24	9.1 8.6	2.5 3.1	4.4 5.5	
, 8	7.1	4.1	3.2	2.9	3.7	6.3	1.1	1.2	1.2	0.9	0.8	0.7	0.8	1.2	1.4	1.9	3.1	4.4	5.1	5.8	5.7	6.5	7.0	6.9	24	7.1	0.7	3.5	
9	7.4	7.0	6.7	5.8	4.9	4.1	3.6	2.9	2.2	1.6	1.6	1.8	2.0	1.4	1.4	1.4	1.5	1.4	1.7	1.8	1.9	1.9	2.1	2.1	24	7.4	1.4	2.9	
10	2.1	2.0	1.9	1.9	1.8	1.8	1.9	1.9	1.9	1.7	1.7	1.7	1.7	1.7	1.9	2.9	2.6	2.1	2.9	4.1	6.4	7.0	6.7	6.7	24	7.0	1.7	2.9	
11	7.4	7.3	6.3	5.1	4.5	4.4	5.2	4.2	2.6	1.6	1.5	1.3	1.5	1.5	1.8	1.8	1.7	1.5	2.2	4.1	3.6	3.4	3.6	2.6	24	7.4	1.3	3.4	
12	2.1	1.5	1.4	1.3	1.3	1.4	1.4	1.4	1.2	1.1	1.4	1.7	1.9	2.8	3.0	3.3	4.6	5.4	5.4	4.6	5.0	5.5	5.3	5.3	24	5.5	1.1	2.9	
13	5.2	5.5	7.0	8.0	1.7	1.1	1.2	С	0.8	1.3	3.1	4.0	4.4	5.0	6.0	6.0	5.8	4.7	3.5	3.6	4.0	3.7	5.4	8.6	23	8.6	0.8	4.3	
14	6.8	4.7	4.0	4.2	3.9	3.1	2.8	2.7	2.1	0.5	0.7	0.9	0.8	0.7	0.8	0.7	1.0	1.6	1.9	2.0	1.8	1.8	1.6	1.6	24	6.8	0.5	2.2	
15	1.8	1.8	1.9	1.9	2.1	2.3	2.1	1.8	2.0	1.9	2.1	2.2	2.4	2.7	2.3	1.9	3.0	3.7	4.4	3.6	3.6	4.3	5.2	6.7	24	6.7	1.8	2.8	
16	4.9 4.8	3.7 3.6	4.6 4.7	5.9 6.4	6.7 6.6	7.7 7.7	8.5 8.7	8.4 8.6	10.1 6.9	12.4 5.1	11.1 2.6	10.0 2.3	9.6 3.7	9.7 4.0	10.0 6.8	10.7 8.9	7.2 7.3	6.2 2.8	5.5 1.7	4.5 1.9	3.6 1.5	3.7 0.8	5.4 0.4	5.4 0.8	24 24	12.4 8.9	3.6 0.4	7.3 4.5	
17	3.1	5.2	6.0	5.4	5.6	5.7	5.5	5.4	5.6	5.6	6.0	6.1	6.4	7.6	8.2	9.0	9.3	8.8	8.7	5.1	0.8	0.8	0.4	0.8	24	9.3	0.4	5.4	
19	0.3	0.5	0.6	0.4	0.6	1.2	2.3	2.9	1.8	1.6	1.6	1.8	3.5	4.1	3.2	1.7	1.4	0.9	1.5	5.7	7.0	6.9	7.4	6.9	24	7.4	0.3	2.7	
20	6.6	8.2	8.3	10.6	10.4	8.8	8.6	2.1	0.4	0.4	0.9	1.2	0.8	1.9	1.9	1.9	2.4	2.3	2.5	1.8	1.4	1.1	1.3	1.3	24	10.6	0.4	3.6	
21	1.4	1.7	1.9	1.9	1.9	1.6	1.7	2.2	2.3	2.3	2.7	2.8	2.9	3.7	3.9	2.9	3.7	4.7	4.4	4.0	4.0	3.8	3.7	3.8	24	4.7	1.4	2.9	
22	4.5	5.4	4.6	3.7	2.9	3.1	3.1	2.7	1.4	1.1	1.2	1.3	1.3	1.2	1.1	1.1	1.2	1.9	2.1	2.5	2.2	1.9	2.1	2.3	24	5.4	1.1	2.3	
23	2.4	2.1	1.9	2.2	2.3	2.2	2.3	2.0	1.9	2.0	2.3	2.6	2.8	3.2	3.5	2.9	4.8	7.3	6.7	7.2	7.6	7.6	7.8	7.2	24	7.8	1.9	3.9	
24	8.1	8.3	8.0	3.6	2.5	1.8	1.8	1.8	2.3	3.1	2.8	2.2	1.8	1.4	1.5	2.0	2.4	2.4	2.5	2.8	2.6	2.2	2.4	2.0	24	8.3	1.4	3.0	
25	2.3	2.9	3.3	3.7	3.3	2.7	2.6	2.2	1.3	1.4	1.8	1.7	1.4	1.4	1.1	1.1	1.5	2.5	2.9	2.6	3.1	3.0	2.8	2.1	24	3.7	1.1	2.3	
26	1.9	2.3	2.9	2.6	2.8	3.1	3.0	2.7	1.6	1.0	1.0	0.9	1.0	1.1	1.3	1.5	1.5	2.1	2.9	3.4	3.0	2.7	2.3	2.2	24	3.4	0.9	2.1	
27	2.3 1.8	2.5 1.7	3.0 1.4	3.7 1.5	2.5 1.4	9.4 1.6	3.2 1.8	11.4 1.9	3.9 1.5	1.4	1.0 2.1	1.0 2.2	1.4	0.9 2.0	1.0 2.9	1.1 4.7	1.1 4.9	1.5 5.0	1.9 5.4	2.4 4.6	3.7 3.0	4.5 2.3	3.9 2.2	3.1 2.5	24 24	11.4 5.4	0.9	3.0 2.6	
28	3.3	4.6	4.9	4.8	4.1	3.0	2.4	3.1	2.7	1.8 3.0	4.6	6.2	1.9 7.6	8.6	11.0	12.0	10.5	7.6	3.4	2.9	2.3	2.3	2.2	2.5	24	12.0	1.4 2.1	5.0	
30	2.6	2.3	2.3	2.5	3.1	3.8	3.9	3.9	3.9	2.0	1.7	1.9	1.8	2.0	2.3	2.8	3.6	4.6	4.0	3.0	2.8	3.8	3.7	4.5	24	4.6	1.7	3.0	
31	3.7	3.8	4.3	3.5	3.0	2.9	3.2	3.1	2.1	1.2	1.1	1.1	1.1	1.1	1.3	1.2	1.4	3.1	7.5	12.2	6.6	5.6	5.6	2.9	24	12.2	1.1	3.5	
Count	31	31	31	31	31	31	31	30	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	743				
Maximum	8.6	8.3	8.3	10.6	10.4	9.4	8.7	11.4	10.1	12.4	11.1	10.0	9.6	9.7	11.0	12.0	10.5	8.8	8.7	12.2	7.6	9.1	8.5	8.6	24				
Minimum	0.3	0.5	0.6	0.4	0.6	0.7	0.7	0.7	0.4	0.4	0.7	0.7	0.7	0.6	0.8	0.7	1.0	0.9	1.4	1.6	0.8	0.7	0.4	0.3	23				
Average	3.9	3.8	3.9	3.8	3.5	3.7	3.4	3.6	2.7	2.4	2.4	2.5	2.8	2.9	3.3	3.5	3.5	3.6	3.8	4.0	3.8	3.9	3.9	3.9					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				ım Hourly num Daily	12.4 7.3
Data		1.1		1.6		1.9		2.3		2.8		3.4		4.1		5.2		6.8		8.1		10.6		12.4			Monthly	y Average	3.4
Notes	С	- Calibratio	n / Span Cy	rcle N	A - No Data	Available	Т-	Test	Α-	MOE Audit	М	- Equipme	nt Malfunct	tion / Dowr	n R	- Rate of Ch	ange											1	

										No	'M _{2.5} - Co vember g/m³)	OURTICE	2016																
H ₀	our 0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count M	aximum M	inimum	Average	
1	1.8	2.2	2.4	2.6	2.7	2.7	2.6	2.1	2.6	3.6	3.9	4.1	4.5	5.2	5.2	4.5	4.8	6.6	6.8	8.7	10.1	9.6	8.7	8.7	24	10.1	1.8	4.9	
2	9.8	11.4	13.1	16.1	18.7	20.1	20.0	17.8	13.7	9.3	8.2	4.6	5.1	7.1	9.2	6.4	8.4	8.7	7.0	8.1	8.4	8.6	8.7	6.3	24	20.1	4.6	10.6	
3	3.8	3.9	4.0	3.5	3.3	3.1	2.3	2.1	2.2	2.4	2.2	3.4	4.1	3.6	3.3	4.3	5.6	8.2	8.3	7.5	5.8	3.5	3.5	4.3	24	8.3	2.1	4.1	
4	5.1	4.8	6.1	6.5	5.0	4.2	4.9	4.4	2.5	2.8	3.1	2.5	2.1	2.5	2.8	4.5	4.6	3.0	6.1	5.3	3.4	3.8	3.9	4.1	24	6.5	2.1	4.1	
5	4.8	7.0	7.2	6.3	5.4	4.9	5.2	5.8	6.0	8.5	8.1	4.5	6.9	9.1	7.1	6.2	2.2	2.4	4.1	5.4	6.3	5.4	3.7	4.2	24	9.1	2.2	5.7	
6	5.6	4.9	3.5	3.9	4.7	5.3	6.0	6.0	4.9	4.4	3.7	3.8	3.6	3.6	3.5	3.3	3.8	5.2	8.3	11.6	20.6	19.1	14.1	12.4	24	20.6	3.3	6.9	
7	9.5	7.7	7.3	6.7	7.0	6.5	6.3	7.0	6.0	4.7	3.5	3.3	3.4	3.4	3.6	3.5	3.7	5.1	6.4	9.1	13.1	15.0	14.1	11.2	24	15.0	3.3	7.0	
8	9.9	9.4	7.2	6.6	7.0	10.1	14.9	21.5	15.3	6.9	3.1	3.1	4.0	5.6	8.2	9.7	10.3	12.9	13.1	18.2	19.3	19.4	18.7	16.2	24	21.5	3.1	11.3	
10	12.6 5.0	7.7 5.5	4.3 5.9	1.0 6.7	0.8 7.8	7.9	7.3	7.4	1.4 6.4	1.7 5.7	1.6 5.7	1.4 4.5	3.2	1.3 2.4	2.3	1.5 2.4	1.3 3.4	1.7 4.1	5.0	3.3 4.6	4.0	5.3 3.6	5.4 3.5	5.6 3.8	24	12.6 7.9	0.8 2.3	2.9 4.9	
11	4.4	4.8	3.7	1.8	1.6	1.7	1.8	1.8	1.7	1.7	1.8	1.6	1.5	1.6	1.7	1.7	2.3	4.4	5.9	5.5	7.9	7.1	6.1	7.9	24	7.9	1.5	3.4	
12	6.5	5.0	5.7	4.7	3.8	2.9	2.7	2.5	2.3	1.6	1.2	1.1	1.1	1.6	1.5	1.2	1.3	1.7	2.0	2.4	3.0	3.6	4.8	4.4	24	6.5	1.1	2.9	
13	4.8	5.4	5.5	6.5	7.0	8.7	10.6	11.8	12.2	13.5	14.3	14.4	14.4	14.0	13.3	10.8	8.4	6.1	5.8	6.7	6.0	6.2	6.4	6.2	24	14.4	4.8	9.1	
14	6.8	8.3	8.0	8.3	8.6	8.9	8.9	8.7	7.9	8.5	9.6	9.8	10.1	10.8	12.0	11.4	12.5	13.9	15.2	14.8	15.4	14.8	17.9	27.7	24	27.7	6.8	11.6	
15	26.0	24.6	25.3	24.9	23.3	28.4	29.2	30.6	20.2	15.9	16.4	9.4	7.6	7.7	8.2	8.6	12.2	17.2	21.3	23.0	23.3	25.2	25.9	25.3	24	30.6	7.6	20.0	
16	25.2	25.2	26.6	27.0	25.4	23.9	23.4	25.2	24.9	25.8	29.0	28.0	30.6	17.6	6.2	4.5	3.0	3.4	3.2	3.7	3.3	3.4	3.3	3.7	24	30.6	3.0	16.5	
17	4.0	4.8	5.1	4.6	4.5	4.9	5.7	5.0	4.5	3.8	4.9	5.6	4.8	3.6	3.5	3.6	4.5	7.1	9.6	8.7	8.8	9.2	9.3	7.9	24	9.6	3.5	5.8	
18	6.9	7.7	9.2	10.4	9.7	8.7	8.3	9.6	9.7	7.4	6.8	7.3	7.1	8.0	9.6	12.2	11.0	11.6	14.2	12.1	11.9	12.0	12.9	11.5	24	14.2	6.8	9.8	
19	11.7	14.4	10.0	9.5	9.8	10.3	9.2	7.3	6.2	7.8	6.1	2.8	4.5	6.6	3.6	6.8	10.8	8.7	6.1	2.7	1.6	1.8	1.9	1.9	24	14.4	1.6	6.8	
20	1.8	1.8	1.9	2.2	2.0	1.6	1.3	1.3	1.8	2.4	2.4	2.2	2.1	1.8	1.8	1.8	1.8	1.8	1.7	1.7	1.7	1.7	1.6	1.7	24	2.4	1.3	1.8	
21	2.6	3.6	3.2	3.3	2.8	2.8	2.3	2.3	2.2	2.3	2.1	1.7	1.7	1.7	1.7	1.8	1.9	1.7	1.9	1.7	1.7	1.7	1.7	1.7	24	3.6	1.7	2.2	
22	1.7	1.6	1.7	1.5	1.4	1.6	1.7	1.7	2.4	3.3	3.5	2.8	2.6	3.7	2.9	2.6	2.8	3.4	3.4	3.2	2.8	3.1	3.3	3.5	24	3.7	1.4	2.6	
23	5.9 7.0	7.1 10.3	7.8	6.7 5.5	4.7	5.4 19.8	5.8 8.6	5.6 2.5	5.3 5.5	3.3 6.8	7.0	5.8 3.4	1.8 4.8	1.8 3.7	2.1 3.7	4.9 3.8	2.8	3.4	6.5	5.5 5.9	4.7 6.9	3.6	3.6 8.9	3.8 9.9	24 24	7.8 19.8	1.8 2.5	4.8	
24			7.6 18.1		9.6		19.4	19.0	5.5	25.2	6.3		22.9	20.2	16.1	16.9	3.8	4.0	4.9			7.4	1.2		23	28.8	1.1	6.7 14.2	
25	12.0 2.0	16.9 2.4	2.5	16.9 2.7	15.8 3.7	18.1 4.4	4.9	6.0	7.3	25.2 M	28.8 M	26.4 M	22.9 M	20.2 M	16.1 M	16.9 M	15.8 M	9.6 M	1.4 M	1.1 M	1.4 M	1.1 M	1.2 M	1.8 M	23 9	7.3	2.0	14.2	
27	2.0 M	Z.44 M	2.3 M	2.7 M	3.7 M	M	4.5 M	0.0 M	7.3 M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	0	0.0	0.0		
28	M	M	M	M	M	M	M	M	M	M	14.0	13.9	14.9	14.7	15.3	17.8	17.9	13.3	10.3	9.3	7.5	7.9	7.8	7.1	14	17.9	7.1		
29	10.3	16.2	19.7	23.0	23.1	19.0	13.5	11.0	9.4	6.7	4.1	4.0	4.7	4.3	4.3	4.5	4.6	4.5	5.0	5.7	6.3	9.1	12.0	14.9	24	23.1	4.0	10.0	
30	15.8	20.8	23.6	17.1	13.7	11.9	11.5	7.8	5.9	4.6	4.1	3.4	4.7	6.1	5.1	3.8	4.5	4.0	4.2	4.8	4.1	2.4	5.5	4.7	24	23.6	2.4	8.1	
ount	28	28	28	28	28	28	28	28	27	27	28	28	28	28	28	28	28	28	28	28	28	28	28	28	670				
/laximum	26.0	25.2	26.6	27.0	25.4	28.4	29.2	30.6	24.9	25.8	29.0	28.0	30.6	20.2	16.1	17.8	17.9	17.2	21.3	23.0	23.3	25.2	25.9	27.7	24				
∕linimum	1.7	1.6	1.7	1.0	0.8	0.8	0.9	1.1	1.4	1.6	1.2	1.1	1.1	1.3	1.4	1.2	1.3	1.7	1.4	1.1	1.4	1.1	1.2	1.7	0				
Average	8.0	8.8	8.8	8.4	8.3	8.9	8.5	8.4	7.0	7.1	7.3	6.4	6.4	6.2	5.7	5.9	6.1	6.3	6.8	7.2	7.6	7.7	7.8	7.9					
ercentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximu	m Hourly	3
ata		1.8		2.6		3.6		4.5		5.4		6.7		8.3		10.6		16.2		22.3		27.8		30.6				Average	4
otes	C -	- Calibratio	n / Span Cy	cle N	A - No Data	Available	Т-	Test	A-	MOE Audit	M	1 - Equipme	nt Malfunc	tion / Dow	n														

										De	PM _{2.5} - Co cember g/m³)	DURTICE	2016																
Dav I	Hour 0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count N	aximum N	inimum	Average	
1	5.5	3.9	3.7	8.2	8.8	9.9	10.1	5.6	3.5	5.6	6.2	4.6	3.1	4.5	6.5	5.1	5.1	5.8	5.3	4.6	6.5	6.9	5.5	5.1	24	10.1	3.1	5.8	
2	3.3	2.0	0.9	0.4	0.3	0.3	0.4	0.7	0.7	0.9	0.9	0.6	0.8	0.6	0.5	0.5	0.6	0.9	1.6	1.6	1.6	2.1	2.0	2.0	24	3.3	0.3	1.1	
3	2.2	2.3	2.2	1.8	1.9	2.5	2.5	2.6	2.5	1.1	0.9	1.2	0.9	1.0	1.5	1.5	1.7	2.6	2.5	2.9	2.8	3.3	3.9	5.2	24	5.2	0.9	2.2	
4	7.4	7.7	6.7	5.7	6.3	6.2	5.3	4.0	2.6	1.9	17.1	2.4	0.7	0.7	0.8	1.4	2.2	2.7	2.7	4.3	7.3	3.8	3.5	19.8	24	19.8	0.7	5.1	
5	14.2	1.5	1.9	1.7	1.7	2.0	1.7	2.7	6.7	7.2	6.2	4.8	4.6	3.4	2.4	2.7	3.1	3.7	4.5	5.8	7.0	9.6	9.4	8.7	24	14.2	1.5	4.9	
6	8.0	7.7	8.3	8.9	9.7	9.3	8.2	7.3	7.7	10.7	13.4	7.6	3.2	6.9	4.6	4.0	3.7	3.2	4.5	3.7	3.1	1.9	1.1	1.1	24	13.4	1.1	6.2	
7	1.7	2.1	2.4	3.3	4.5	10.4	12.8	9.1	7.8	4.2	3.8	3.8	3.7	4.3	4.0	5.1	8.0	6.9	6.4	7.2	9.6	10.3	11.2	10.4	24	12.8	1.7	6.4	
8	10.0	11.2	11.0	9.9	12.2	12.0	11.0	9.5	7.1	4.9	3.4	4.2	3.0	2.8	2.4	2.4	2.9	3.5	4.1	4.7	4.6	4.4	2.3	2.3	24	12.2	2.3	6.1	
9	4.0	3.2	2.7	2.6	2.1	2.1	1.9	1.9	2.6	3.3	2.6	2.3	2.0	1.9	2.2	1.9	3.1	2.7	3.1	3.3	3.4	3.0	2.8	3.4	24	4.0	1.9	2.7	
10	3.8 9.2	3.0 10.3	2.8 10.9	2.0 11.6	4.1 11.4	6.5 11.9	2.0 11.5	2.1 10.8	1.8 10.5	1.8 10.4	1.5 8.9	1.1 10.5	0.8 6.6	0.7 6.6	0.5 7.1	1.2 5.8	3.0 6.0	5.4 5.8	6.3 5.8	5.9 4.8	7.3 4.2	7.9 3.9	7.7 4.3	8.6 5.2	24 24	8.6 11.9	0.5 3.9	3.7 8.1	
12		6.1	6.4	5.4	4.5	2.3	2.3	10.6 C	10.5	6.3		7.5	7.1	5.1	4.5	5.6		6.6	7.1	7.9	8.7	8.9	8.6	8.6	22	8.9	2.3		
12	5.6 9.7	10.3	10.5	10.6	10.9	9.3	9.8	12.2	13.4	15.4	6.7 A	7.5 A	17.2	18.6	19.5	21.0	6.1 21.4	18.3	18.4	20.3	16.7	16.3	9.3	4.4	22	21.4	4.4	6.3 14.2	
14	5.0	4.5	3.5	3.2	3.6	3.9	4.1	4.1	3.5	3.3	3.1	3.6	3.5	3.8	4.1	4.4	5.2	6.0	6.5	7.5	8.0	9.1	6.2	3.8	24	9.1	3.1	4.7	
15	4.1	4.1	4.1	3.9	3.3	2.0	2.0	2.0	2.1	1.8	1.8	2.1	2.7	2.4	1.7	1.9	1.8	1.7	1.5	1.7	1.5	1.6	1.9	2.5	24	4.1	1.5	2.3	
16	2.2	2.0	1.7	1.8	2.4	2.6	2.3	1.8	2.3	2.6	2.7	2.3	1.9	2.2	2.2	3.4	5.3	5.9	8.3	6.8	7.5	5.9	5.3	4.2	24	8.3	1.7	3.6	
17	3.6	3.0	3.9	3.9	3.7	3.9	3.9	2.9	3.0	2.9	3.3	3.2	3.3	3.8	4.7	6.2	8.0	7.3	6.8	6.5	6.9	7.6	8.7	9.0	24	9.0	2.9	5.0	
18	11.5	16.6	14.9	14.0	13.7	10.7	9.4	4.3	2.5	3.0	2.8	2.4	2.4	2.0	1.8	1.7	1.6	1.8	2.6	3.1	2.7	2.3	2.9	2.9	24	16.6	1.6	5.6	
19	2.8	2.7	4.5	3.5	3.0	2.8	3.5	4.2	4.6	4.5	2.8	3.3	2.7	3.3	4.0	3.9	4.6	4.5	5.0	6.7	7.2	5.2	6.8	5.4	24	7.2	2.7	4.2	
20	5.1	5.5	6.2	6.7	7.1	9.2	8.9	8.6	9.5	9.4	9.7	8.6	6.6	5.4	3.8	3.7	3.9	5.0	6.6	7.8	9.1	9.4	10.1	11.2	24	11.2	3.7	7.4	
21	12.8	14.1	14.6	15.5	16.2	18.2	19.6	20.3	20.1	19.1	19.8	20.0	21.9	23.3	22.6	21.0	21.3	22.5	24.1	21.8	26.0	27.9	30.7	35.7	24	35.7	12.8	21.2	
22	34.3	33.8	24.5	5.2	6.7	7.5	10.2	16.0	22.0	27.1	32.6	33.9	35.1	30.6	24.3	20.0	11.3	8.3	9.3	7.1	3.6	3.7	3.1	1.5	24	35.1	1.5	17.2	
23	1.9	2.8	4.1	5.4	7.9	11.2	14.4	16.9	19.2	22.3	21.6	18.0	15.6	11.7	10.8	10.9	9.7	11.1	13.7	14.9	16.8	17.5	17.7	12.5	24	22.3	1.9	12.8	
24	7.6	7.6	6.7	4.4	3.4	4.4	5.4	8.0	11.1	11.1	12.7	13.8	12.6	9.7	7.9	10.3	10.6	6.0	4.4	3.8	3.7	2.8	3.6	4.3	24	13.8	2.8	7.3	
25	5.3	7.2	8.4	9.2	4.4	1.4	1.3	1.2	1.6	1.9	1.7	1.1	0.7	0.8	1.4	2.1	3.3	4.7	4.4	3.8	4.1	4.3	4.2	4.0	24	9.2	0.7	3.4	
26	2.8	2.1	2.0	2.3	2.7	4.0	8.1	8.9	6.3	2.3	3.8	3.8	5.1	5.3	5.8	6.5	10.1	10.1	7.4	6.0	4.4	2.3	1.5	1.8	24	10.1	1.5	4.8	
27	2.4	2.5	1.7	1.9	2.4	2.8	3.9	4.2	4.1	3.9	4.5	4.5	4.6	4.4	4.2	4.0	3.7	4.0	4.5	4.4	4.5	3.5	2.7	2.5	24	4.6	1.7	3.6	
28	2.7	3.8	3.8	3.5	2.9	2.6	2.7	2.1	2.0	2.0	1.9	0.8	1.0	2.9	3.1	3.3	3.9	3.9	6.3	10.7	10.6	9.9	10.4	6.8	24	10.7	0.8	4.3	
29	7.9 2.2	9.9 2.4	9.3	9.4 1.5	9.3 0.8	7.6	5.6 1.7	6.2 1.9	5.4 1.7	2.7 1.8	2.9	7.0 1.8	13.8 1.8	16.9 1.7	13.2 1.9	9.3 2.4	9.8	9.3 1.7	9.2 1.8	5.7 1.5	5.1 1.6	3.1 2.4	3.7 2.2	3.2 1.4	24	16.9	2.7 0.8	7.7	
30	1.3	1.2	1.8 1.1	1.5	2.6	1.2 4.4	3.4	4.0	4.5	3.8	1.8 3.2	2.5	2.2	2.0	1.9	1.9	1.8 2.0	2.7	3.8	4.1	4.0	4.3	7.1	5.6	24 24	2.4 7.1	1.1	1.8 3.1	
Count	31	31	31	31	31	31	31	30	30	31	3.2	30	31	31	31	31	31	31	3.0	31	31	31	31	3.0	740	/.1	1.1	J.1	
Maximum	34.3	33.8	24.5	15.5	16.2	18.2	19.6	20.3	22.0	27.1	32.6	33.9	35.1	30.6	24.3	21.0	21.4	22.5	24.1	21.8	26.0	27.9	30.7	35.7	24				
Minimum	1.3	1.2	0.9	0.4	0.3	0.3	0.4	0.7	0.7	0.9	0.9	0.6	0.7	0.6	0.5	0.5	0.6	0.9	1.5	1.5	1.5	1.6	1.1	1.1	22				
Average	6.5	6.4	6.0	5.5	5.6	6.0	6.1	6.2	6.4	6.4	6.8	6.1	6.2	6.1	5.7	5.6	6.0	5.9	6.4	6.5	6.8	6.6	6.5	6.5					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100			Maximur	n Hourly	35.
																											Maxim	um Daily	21.
Data		1.7		2.2		2.8		3.6		4.2		5.4		7.0		9.3		12.6		18.6		29.6		35.7			Monthly	Average	6.
Notes	С	- Calibration	n / Span Cy	cle N	A - No Data	Available	Т-	Test	A-	MOE Audit	: М	- Equipme	nt Malfunct	tion / Dow	n R	Rate of C	hange												

												M _{2.5} - Ru	ındle Road																	
												ctober		2016																
											(μ	g/m³)																		
Day	Hou	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	
,	1	2.1	2.1	3.4	8.3	11.3	12.5	11.2	10.5	11.0	10.6	10.8	11.4	12.4	11.1	12.0	12.6	11.1	11.3	11.2	10.7	10.1	8.6	7.2	6.9	24	12.6	2.1	9.6	
	2	5.9	4.8	5.2	5.1	5.2	5.6	5.6	6.7	6.4	7.4	7.6	8.5	14.3	8.4	5.0	5.8	4.5	2.9	2.5	2.4	2.1	2.0	1.9	2.0	24	14.3	1.9	5.3	
	3	2.1	2.0	1.9	1.9	1.8	1.5	1.5	1.8	1.7	2.4	2.9	3.5	4.7	3.8	6.2	7.6	8.3	8.3	5.9	5.5	9.3	4.7	2.9	1.2	24	9.3	1.2	3.9	
	4	1.5	2.2	2.1	1.2	1.4	1.5	2.0	2.7	2.9	7.2	8.4	8.8	8.7	9.0	10.4	8.9	11.0	11.7	11.6	10.3	8.8	7.2	5.8	5.4	24	11.7	1.2	6.3	
	5	4.6	5.2	6.3	4.9	2.8	2.4	2.3	2.8	2.4	2.7	4.0	5.1	4.6	4.2	4.0	3.1	1.7	1.9	2.0	2.1	4.2	5.0	5.0	4.6	24	6.3	1.7	3.7	
	6	6.6	8.1	8.3	7.7	7.7	8.0	7.6	7.1	5.7	5.4	6.2	6.8	6.7	6.9	7.2	6.5	6.4	6.1	5.6	4.3	4.3	4.6	4.1	4.0	24	8.3	4.0	6.3	
	7	4.3	5.1	7.1	8.1	9.7	8.2	4.0	4.1	2.9	4.2	5.7	6.0	6.7	5.8	5.2	5.1	5.8	6.1	9.3	8.0	6.9	5.5	2.4	1.9	24	9.7	1.9	5.8	
	8	2.0	2.1	4.7	8.6	11.5	15.3	4.9	4.4	3.7	1.5	0.6	0.6	0.6	0.7	0.6	0.6	0.6	0.5	0.6	0.6	0.5	0.6	0.6	0.6	24	15.3	0.5	2.8	
	9	0.7	0.6	0.6	0.8	0.9	0.9	0.9	1.4	10.7	21.6	27.6	32.8	26.1	13.9	11.6	12.8	14.2	15.9	14.0	4.4	2.0	1.6	2.0	2.4 6.0	24	32.8	0.6	9.2	
	10	2.0 5.3	1.7 4.4	1.6 3.7	1.5 3.3	1.5 2.8	1.5 2.8	1.5 2.9	1.8 5.0	1.9 33.5	19.4 34.8	22.7 40.4	23.3 41.2	24.8 39.0	28.3 40.9	31.2 34.7	45.4 35.7	58.6 35.2	44.4 28.6	49.3 34.7	28.1 41.2	4.5 19.4	4.6 12.3	5.8 7.5	5.3	24 24	58.6 41.2	1.5 2.8	17.1 21.4	
	12	3.6	3.2	10.6	15.9	18.6	2.8	19.2	19.6	23.3	25.9	29.2	31.2	27.9	26.2	24.5	24.9	29.0	28.4	26.2	24.5	18.0	17.7	16.7	15.6	24	31.2	3.2	20.8	
	12	12.8	9.9	12.5	13.2	4.7	3.6	3.4	1.9	0.9	23.5 C	25.2 C	1.2	1.1	1.0	1.1	1.0	0.7	0.6	0.3	0.6	0.5	0.6	0.5	0.7	22	13.2	0.3	3.3	
	14	0.7	0.6	0.6	0.6	0.6	0.7	0.7	13.5	39.7	39.4	37.4	36.7	34.8	32.5	31.5	31.4	33.5	36.7	29.2	21.3	18.9	18.0	14.9	11.9	24	39.7	0.6	20.2	
	15	14.5	17.3	16.8	14.5	6.2	2.2	2.3	3.1	2.7	7.6	18.9	24.1	24.8	22.6	19.1	18.7	23.3	20.0	18.8	14.8	14.1	12.3	14.7	22.9	24	24.8	2.2	14.9	
	16	27.1	28.3	27.7	25.7	23.9	23.2	23.8	21.4	22.6	20.8	19.9	18.3	18.9	20.0	18.4	17.1	9.8	6.2	7.2	6.9	7.1	6.6	7.2	5.8	24	28.3	5.8	17.2	
	17	5.0	4.5	5.1	5.2	4.7	5.2	6.4	5.4	7.1	7.6	5.3	4.3	4.3	5.0	6.8	7.5	5.2	2.8	2.6	3.1	2.9	2.3	1.6	1.9	24	7.6	1.6	4.7	
	18	1.8	2.2	3.0	3.4	4.9	C	С	C	С	Ċ	C	3.3	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.2	18	4.9	0.2	1.2	
	19	0.4	0.3	0.7	1.3	1.8	2.3	2.8	5.5	6.4	3.6	3.1	2.7	6.4	7.7	7.3	5.6	4.7	4.7	5.8	3.4	2.7	2.3	2.5	2.3	24	7.7	0.3	3.6	
	20	2.7	3.1	4.2	16.4	28.7	25.2	10.2	15.5	2.4	0.5	2.0	1.7	3.3	2.6	2.7	2.1	2.2	2.4	3.5	2.5	1.6	1.0	1.5	1.3	24	28.7	0.5	5.8	
	21	1.2	2.0	2.4	2.4	1.7	0.9	1.0	1.0	0.9	0.7	0.8	1.0	0.9	1.0	1.2	0.8	0.6	0.6	0.4	0.3	0.2	0.2	0.2	0.2	24	2.4	0.2	0.9	
	22	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.2	24	0.3	0.2	0.2	
	23	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.5	0.4	0.4	0.3	0.5	0.7	2.9	3.9	5.8	10.2	13.1	8.8	4.8	3.2	2.8	2.9	3.3	24	13.1	0.2	2.8	
	24	3.8	3.2	2.8	1.5	0.7	0.4	0.3	0.5	0.5	0.9	0.8	0.5	0.5	0.4	0.6	0.8	0.7	1.0	1.1	1.1	1.2	1.2	1.4	1.2	24	3.8	0.3	1.1	
	25	0.9	1.0	1.2	1.1	0.4	0.6	0.8	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.4	0.2	0.2	0.2	0.2	0.2	24	1.2	0.2	0.4	
	26	0.2	0.2	0.2	0.2	0.3	0.4	0.7	0.5	0.5	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.5	0.8	0.6	0.3	0.4	0.2	24	0.8	0.2	0.3	
	27	0.2	0.3	0.3	0.3	0.4	0.6	0.9	1.3	1.3	1.3	4.2	10.6	14.8	8.1	8.1	3.5	9.1	7.8	5.4	8.0	10.6	10.2	9.5	4.7	24	14.8	0.2	5.1	
	20	2.6	1.7 12.8	2.1 12.6	1.6 14.2	1.6 23.1	1.1 32.9	1.2 42.0	2.1 46.4	1.0 44.5	2.2 47.2	5.2 58.0	18.7 66.3	27.2 73.7	27.6 77.6	34.2 77.1	55.9 67.4	55.4 56.5	48.5 37.0	22.2 15.7	10.5 14.3	9.3 9.9	11.9 5.8	16.2 3.5	14.7 2.0	24 24	55.9 77.6	1.0 2.0	15.6 35.5	
	20	12.0 1.9	2.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2	0.7	0.6	0.6	0.4	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.4	0.3	24	2.1	0.2	0.8	
	31	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.6	10.1	9.2	7.2	8.1	9.4	11.5	10.7	13.7	15.1	14.4	2.0	6.5	4.7	3.6	3.6	3.2	24	15.1	0.2	5.7	
Count		31	31	31	31	31	30	30	30	30	29	29	31	31	31	31	31	31	31	31	31	31	31	31	31	736	13.1	0.5	3.7	
Maximu	m	27.1	28.3	27.7	25.7	28.7	32.9	42.0	46.4	44.5	47.2	58.0	66.3	73.7	77.6	77.1	67.4	58.6	48.5	49.3	41.2	19.4	18.0	16.7	22.9	24				
Minimu		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	18				
Average		4.2	4.2	4.8	5.5	5.8	6.1	5.4	6.3	8.3	9.9	11.4	12.2	12.9	12.3	12.1	13.0	13.4	11.7	9.6	7.8	5.8	5.0	4.6	4.3					
Percenti	iles		10		20		30		40		50		60		70		80		90		95		99		100			Maxim	num Hourly	77.6
. zrecitt					20		30				50		00		,,		00		30				33		100				mum Daily	35.5
Data			0.3		0.6		1.2		2.2		3.6		5.4		7.9		12.5		23.6		33.5		56.3		77.6				nly Average	8.1
Notes		C -	Calibration	/ Span Cyc	cle NA	A - No Data	Available	Т-	Test	A	- MOE Audit	М	- Equipmer	nt Malfunct	ion / Down	R -	Rate of Ch	nange												

										No	M _{2.5} - Ru vember g/m³)	undle Road	d 2016																
Day	lour 0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	Count	Maximum	Minimum	Average	
1	2.3	2.3	6.7	12.5	17.3	19.2	21.9	17.9	19.6	27.2	31.5	38.2	44.1	44.7	44.2	40.9	46.0	60.4	60.1	40.8	46.8	28.5	28.2	29.5	24	60.4	2.3	30.4	
2	31.5	30.1	30.0	30.5	31.3	41.7	36.4	40.4	34.2	30.1	26.5	17.1	12.5	16.1	22.9	21.8	17.3	14.3	8.2	7.0	8.2	11.0	10.3	10.0	24	41.7	7.0	22.5	
3	6.4	3.8	3.8	2.3	1.1	0.9	0.7	0.6	0.6	0.6	0.9	2.7	4.4	4.7	4.6	6.1	6.2	4.5	1.8	1.6	1.4	0.8	0.6	0.6	24	6.4	0.6	2.6	
4	0.7	0.6	0.9	0.9	0.7	0.6	0.7	0.8	0.5	0.5	3.2	4.2	5.9	15.4	21.5	31.1	37.4	27.7	10.3	3.1	2.1	2.0	2.3	2.6	24	37.4	0.5	7.3	
5	3.3	4.4	4.2 0.7	3.5	3.2	3.4	3.5	2.8	5.5	16.9	34.8	27.6	40.5	54.3	43.9	37.6	12.7	13.5	13.4	9.3	6.9	6.0	4.6	3.9 7.8	24	54.3	2.8	15.0	
6	3.3 5.0	1.2 3.9	3.6	0.6 3.6	0.6 3.6	0.6 3.1	0.6 3.1	0.8 3.8	1.0 8.0	0.8 42.1	4.5 60.2	14.6 67.4	18.9 50.1	16.4 49.7	14.6 55.4	13.2 42.0	11.3 30.6	8.5 30.6	2.0 23.5	3.2 9.4	6.6 2.8	6.6 3.2	7.8 3.0	2.5	24 24	18.9 67.4	0.6 2.5	6.1 21.3	
8	1.9	2.4	1.3	0.9	1.1	2.2	2.8	3.0	13.0	44.3	34.2	45.5	55.4	65.4	77.0	78.7	70.4	68.8	60.1	70.0	64.8	66.2	60.3	49.3	24	78.7	0.9	39.1	
9	34.6	22.0	11.5	2.8	1.4	0.6	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.4	0.4	24	34.6	0.2	3.2	
10	0.2	0.3	0.3	0.4	0.6	0.6	0.7	3.7	21.9	45.8	61.4	63.1	58.1	51.8	49.7	48.2	57.0	47.6	41.0	30.5	22.7	15.7	11.2	10.1	24	63.1	0.2	26.8	
11	10.3	14.5	18.5	7.0	3.5	3.9	2.8	С	С	C	С	С	11.0	4.3	2.5	2.2	2.1	3.4	3.2	1.5	1.4	0.9	1.0	1.1	19	18.5	0.9	5.0	
12	1.1	0.5	0.4	0.6	0.6	0.7	0.5	1.3	7.0	24.0	22.6	34.7	27.7	34.4	41.3	32.9	30.2	28.2	28.7	33.7	35.9	33.1	29.3	24.6	24	41.3	0.4	19.7	
13	15.5	9.0	6.2	7.5	7.5	11.2	11.1	6.5	14.1	28.3	36.1	39.0	42.2	43.4	39.9	32.7	19.2	11.6	9.3	8.8	7.6	5.9	5.0	4.3	24	43.4	4.3	17.6	
14	5.1	6.7	5.6	3.9	1.9	1.9	1.9	2.1	2.1	4.5	14.3	21.6	24.2	28.6	27.8	29.5	36.2	44.7	24.9	19.3	17.3	13.1	8.9	3.2	24	44.7	1.9	14.6	
15	3.1	2.3	2.7	3.1	3.7	2.8	3.6	3.6	6.5	14.4	40.2	53.4	36.0	36.6	33.3	33.8	29.8	25.9	18.6	7.3	2.2	2.7	2.7	2.7	24	53.4	2.2	15.5	
16	2.6	2.7 1.0	2.7 0.8	3.8 0.7	6.5 0.6	12.7 0.8	19.6	21.3 0.7	26.2	37.2 0.8	52.6 9.4	69.9	71.8 17.7	37.1	18.9	14.2	11.3	10.9	8.6	7.4	5.8	4.5	4.0	3.1	24 24	71.8	2.6	19.0 7.4	
17	2.0	2.2	1.9	2.6	2.4	3.3	1.0 4.9	3.1	2.6	13.7	23.8	21.4 33.5	39.9	15.0 42.7	17.0 44.8	21.6 44.6	22.3 35.0	20.2 33.2	8.1 31.7	2.6 24.5	2.9 19.8	3.3 16.8	3.1 13.6	3.1 11.2	24	22.3 44.8	0.6 1.9	18.9	
19	9.3	9.4	10.3	9.4	7.7	6.6	6.6	7.2	5.7	13.7	16.5	7.3	8.9	8.6	2.0	1.0	1.3	1.2	0.9	0.4	0.2	0.2	0.2	0.2	24	16.5	0.2	5.6	
20	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	24	0.2	0.2	0.2	
21	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	24	0.2	0.2	0.2	
22	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	24	0.2	0.2	0.2	
23	0.3	0.2	0.2	0.3	0.6	4.4	2.0	0.9	1.0	2.9	3.0	2.1	15.8	28.3	17.1	5.9	9.5	7.3	8.0	6.6	7.3	8.8	7.2	5.1	24	28.3	0.2	6.0	
24	5.1	9.5	10.6	16.2	15.0	12.6	14.3	17.8	22.3	31.6	33.6	31.7	36.7	37.5	34.5	32.9	27.0	18.5	17.4	16.6	14.6	16.2	13.6	11.6	24	37.5	5.1	20.7	
25	12.6	16.6	18.2	15.2	13.8	13.8	15.4	15.9	17.5	23.0	30.9	37.4	32.2	34.8	31.2	28.0	22.5	14.7	3.1	3.4	4.0	4.1	4.0	4.5	24	37.4	3.1	17.4	
26	4.7	4.4	3.5	2.9	3.2	3.1	3.3	3.4	5.6	10.1	10.0	8.4	6.0	3.7	2.5	4.6	6.5	8.1	8.1	4.8	4.1	3.7	1.2	1.0	24	10.1	1.0	4.9	
27	1.2	1.5	1.3	1.6	1.5	1.5	0.9	1.0	1.5	4.3	10.1	17.7	17.4	12.0	14.6	16.5	15.0	13.2	10.4	9.7	4.3	4.4	4.9	3.7	24	17.7	0.9	7.1	
28	2.6 9.7	2.7 16.8	2.5 22.3	2.1 26.0	2.9 22.8	2.5 17.9	2.5 13.2	2.1 11.3	3.0 12.7	3.6 14.5	11.4 13.8	19.5 16.8	27.7 21.5	25.7 22.3	24.1 21.9	22.8 19.1	12.5 19.6	6.6 21.1	5.5 19.8	5.7 15.1	5.5 11.5	5.6 6.4	5.9 1.6	6.5 1.5	24 24	27.7 26.0	2.1 1.5	8.8 15.8	
30	1.5	2.0	2.2	3.4	4.2	11.5	15.5	16.3	16.5	18.0	14.2	13.1	20.9	25.6	21.9	20.4	18.8	20.3	20.1	18.6	15.5	13.5	16.4	14.9	24	25.6	1.5	14.4	
31	1.5	2.0	2.2	5.4	4.2	11.5	13.3	10.5	20.5	10.0	1-7.2	13.1	20.5	25.0	22.5	20.4	20.0	20.5	20.1	10.0	13.3	13.3	10.4	14.5	24	25.0	1.5	24.4	
Count	30	30	30	30	30	30	30	29	29	29	29	29	30	30	30	30	30	30	30	30	30	30	30	30	715				
Maximum	34.6	30.1	30.0	30.5	31.3	41.7	36.4	40.4	34.2	45.8	61.4	69.9	71.8	65.4	77.0	78.7	70.4	68.8	60.1	70.0	64.8	66.2	60.3	49.3	24				
Minimum	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	19				
Average	6.0	5.8	5.8	5.5	5.3	6.1	6.3	6.5	8.6	15.6	20.7	24.4	24.9	25.3	24.3	22.8	20.3	18.9	14.9	12.1	10.8	9.5	8.4	7.3					
Percentiles		10		20		30		40		50		60		70		80		90		95		99		100				um Hourly	78.
Data		0.2		0.9		2.4		3.6		6.5		11.1		16.5		23.6		36.0		45.0		67.2		78.7				num Daily ly Average	39. 13.
Notes		C - Calibratio	n / Span Cyo	cle N/	A - No Data	Available	Т-	Test	,	A- MOE Audit	М	- Equipmer	nt Malfunct	ion / Down	R -	Rate of 0	Change												

												undle Roa																		
											cember g/m³)		2016																	
	Hour																													
Day	0	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300		aximum N		Average		
1	9.9	11.5	10.0	14.5	13.0	13.3	12.8	8.4	5.7	28.0	25.6	16.2	14.1	20.0	23.0	18.3	16.5	13.8	11.6	9.9	10.0	8.6	7.2	8.5	24	28.0	5.7	13.8		
2	6.8 1.0	3.9 0.9	1.9 0.6	1.2 0.4	1.1 0.4	1.0 0.8	1.5 0.9	1.2 2.4	0.8 9.7	1.1 11.0	1.3 13.2	2.2 15.0	3.5 13.7	2.2 14.6	2.0 17.1	2.8 15.4	2.3 35.3	2.1 36.5	2.4 27.5	2.7 18.0	0.8 13.0	1.0 9.0	1.3 4.9	1.5 2.4	24 24	6.8 36.5	0.8 0.4	2.0 11.0		
ے 1	3.0	3.1	3.2	2.7	3.3	3.3	3.2	2.5	1.7	0.8	0.7	5.6	1.6	2.8	1.7	0.9	0.9	1.4	1.8	1.6	2.2	2.2	2.1	2.6	24	5.6	0.4	2.3		
-	6.0	12.7	24.1	17.2	16.1	17.9	21.6	26.9	53.4	51.8	41.7	36.6	34.5	28.0	20.1	20.9	23.0	19.9	16.0	10.0	6.3	7.3	4.2	9.3	24	53.4	4.2	21.9		
6	11.0	13.7	9.6	3.2	1.9	2.0	1.9	1.7	2.0	2.8	11.7	15.3	15.1	22.3	19.9	16.2	13.3	10.3	11.1	6.9	8.8	6.4	0.8	0.8	24	22.3	0.8	8.7		
7	2.5	2.9	3.6	7.4	8.3	16.5	16.0	9.1	2.8	1.0	1.3	2.3	3.9	5.0	3.8	5.7	11.3	11.1	9.7	11.0	13.3	11.6	8.7	4.7	24	16.5	1.0	7.2		
8	4.3	2.5	3.0	2.6	2.2	2.4	4.9	6.3	2.2	1.1	0.5	0.7	0.4	0.5	0.8	1.1	0.8	0.9	1.0	1.1	1.0	1.7	0.8	1.9	24	6.3	0.4	1.9		
9	0.5	0.5	0.4	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.4	0.4	1.1	24	1.1	0.2	0.3		
10	0.7	0.7	1.1	0.3	21.7	30.0	23.9	9.3	0.6	0.2	0.7	0.9	0.5	0.3	0.4	0.8	5.9	2.9	0.5	0.3	0.6	0.6	0.6	0.8	24	30.0	0.2	4.3		
11	1.3	2.7	1.9	2.2	2.1	2.0	2.8	3.1	2.2	2.3	8.5	23.2	26.7	32.3	40.5	31.6	27.7	23.4	23.5	20.3	16.7	14.1	15.2	20.6	24	40.5	1.3	14.5		
12	24.5	32.5	37.5	30.1	23.2	13.6	14.1	26.4	37.0	29.5	30.8	31.0	31.0	23.3	C	С	19.3	17.5	21.5	19.7	25.6	26.3	25.5	24.9	22	37.5	13.6	25.7		
13	28.9	29.9	29.4	33.2	33.8	29.8	32.2	43.2	45.4	48.1	50.7	48.3	A 8.9	34.3 12.5	37.8 16.6	38.3 19.6	38.2	29.1	29.0 14.5	35.2 13.5	23.9 11.2	20.5	13.5 5.9	4.0 0.8	23 24	50.7	4.0	32.9		
14	1.4	0.5 1.0	0.3 1.0	0.3	0.3 0.7	0.3	0.3 0.2	0.3	0.3	0.3	0.9 1.8	4.6 14.9	8.9 21.6	12.5	7.5	9.9	22.0 11.9	14.7 15.4	14.5	13.5	10.8	7.2 12.2	17.3	8.5	24	22.0 21.6	0.3	6.6 7.4		
15	1.3 2.8	1.6	1.1	0.9	2.0	6.5	9.3	8.1	27.1	42.4	56.1	55.4	38.7	41.5	63.9	55.4	56.0	136.4	37.9	28.8	27.8	17.7	20.6	18.8	24	136.4	0.2	31.5		
17	31.3	16.9	17.3	19.3	18.4	22.7	20.9	18.1	16.7	18.8	19.9	25.5	29.0	32.8	44.0	38.4	37.5	34.4	37.5 M	20.0 M	27.8 M	13.0	14.8	15.3	21	44.0	13.0	24.0		
18	18.4	24.0	21.0	19.1	21.0	15.1	13.0	5.2	5.9	4.6	4.1	3.4	2.4	2.4	1.5	1.3	0.9	1.7	1.9	2.5	1.7	1.6	4.3	3.5	24	24.0	0.9	7.5		
19	2.4	2.3	2.3	3.3	2.0	1.9	3.1	4.2	5.3	6.2	14.2	39.2	38.6	46.0	55.0	59.1	31.8	19.7	19.2	30.9	24.1	13.4	20.0	22.4	24	59.1	1.9	19.4		
20	17.4	20.2	29.7	32.3	28.8	29.7	25.2	27.6	39.8	43.3	49.7	42.5	32.5	23.6	18.2	18.6	18.0	20.8	24.0	24.9	24.9	20.3	17.2	13.8	24	49.7	13.8	26.8	-	
21	10.7	9.0	7.9	6.8	6.3	7.8	6.6	4.6	4.6	10.6	24.8	31.4	34.4	37.9	36.9	32.0	31.5	31.7	32.4	25.3	27.8	34.0	34.7	32.3	24	37.9	4.6	21.8		
22	32.2	33.9	27.9	6.5	9.0	10.3	14.4	22.7	31.7	41.2	46.7	48.4	47.5	42.4	34.3	30.4	18.0	23.2	15.7	11.0	4.0	4.5	2.7	1.2	24	48.4	1.2	23.3		
23	2.7	5.8	7.6	8.3	10.5	12.3	12.2	13.0	12.0	15.6	25.8	26.4	24.4	19.9	18.4	18.0	13.4	10.7	14.5	16.0	17.2	18.1	19.9	21.8	24	26.4	2.7	15.2		
24	14.7	11.7	5.9	3.5	2.8	4.3	6.7	9.0	11.3	11.4	15.8	17.1	17.0	14.4	12.6	14.7	15.2	10.1	6.9	6.2	4.1	2.4	3.0	4.3	24	17.1	2.4	9.4		
25	6.7	10.4	12.5	13.2	6.5	1.4	1.4	1.0	0.4	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.4	0.3	0.3	0.4	0.4	0.4	24	13.2	0.2	2.4		
26	0.6	0.6 10.9	0.6 5.2	0.6	0.6	0.6	2.7	10.4	27.3 2.1	43.3	74.8	113.5	102.6 1.7	80.0 1.7	73.9 1.9	73.7 1.8	75.9	42.6	27.1	45.9	40.6 2.1	32.2	21.1	17.8 1.0	24 24	113.5	0.6	37.9		
27	14.5 1.1	1.3	1.4	4.2 1.4	4.6 0.9	3.5 0.6	4.0 0.6	2.5 0.6	0.6	1.4 1.7	1.6 3.5	1.6 3.2	4.5	7.1	4.0	2.7	1.9 2.5	1.5 2.1	1.7 3.1	1.8 6.8	8.3	1.4 13.4	0.9 14.0	10.9	24	14.5 14.0	0.9 0.6	3.1 4.0		
29	15.9	18.3	18.2	17.2	18.7	13.6	8.2	9.5	9.8	6.0	6.7	18.0	30.4	41.2	31.2	18.3	20.8	18.8	14.6	9.1	6.4	3.5	1.8	0.8	24	41.2	0.8	14.9		
30	0.6	2.7	2.0	1.1	0.5	0.9	1.0	0.7	0.8	1.6	2.8	1.9	1.8	2.3	3.7	4.8	4.6	1.8	2.7	1.5	1.6	1.8	2.2	2.7	24	4.8	0.5	2.0		
31	3.2	3.5	3.6	6.1	9.5	16.6	12.7	14.6	14.0	14.4	14.0	13.8	16.5	17.9	18.5	19.8	18.8	20.1	20.2	17.7	14.2	15.6	19.4	10.6	24	20.2	3.2	14.0		
Count	31	31	31	31	31	31	31	31	31	31	31	31	30	31	30	30	31	31	30	30	30	31	31	31	738					
Maximum	32.2	33.9	37.5	33.2	33.8	30.0	32.2	43.2	53.4	51.8	74.8	113.5	102.6	80.0	73.9	73.7	75.9	136.4	37.9	45.9	40.6	34.0	34.7	32.3	24					
Minimum	0.5	0.5	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.4	0.4	0.4	21					
Average	9.0	9.4	9.4	8.4	8.7	9.1	9.0	9.4	12.1	14.2	17.8	21.2	19.9	20.1	20.3	19.0	18.6	18.6	13.6	13.1	11.6	10.4	9.9	8.7						
Percentiles		10		20		30		40	•	50		60		70		80		90		95		99		100			Maximu	m Hourly		136.4
Data		0.6		1.4		2.3		4.2		8.8		13.4		17.5		23.2		32.3		41.2		70.1		136.4			Maxim Monthly	um Daily		37.9 13.5
Notes	۲	- Calibratio	n / Span Cv		A - No Data		т.	Test	Δ-	MOE Audit	· M		nt Malfunct		n R.	- Rate of C	hange										,	0-		

Figure E-1 Time History Plot of Measured 24 Hour Average PM_{2.5} Concentrations – Courtice WPCP Station

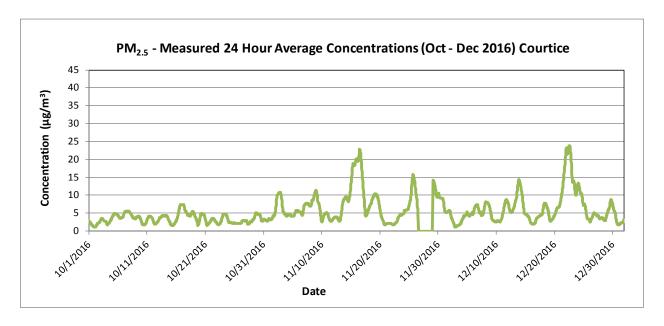
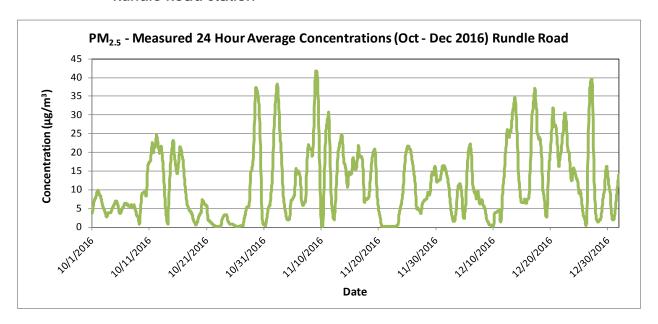



Figure E-2 Time History Plot of Measured 24 Hour Average PM_{2.5} Concentrations – Rundle Road Station

Appendix F Continuous Parameter Edit Logs February 8, 2017

Appendix F CONTINUOUS PARAMETER EDIT LOGS

Project No.: 160950528 F.1

EDIT LOG TABLE

EDIT LOG TABLE								
Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program					
Contact			Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:		I/A	Station Name:	Courtice WPCP Station				
Station address:	Courtice Water Po Plant		Emitter Address:	The Region of Durham,				
Pollutant or parameter:		Instrument make		Teledyne Monitor Labs		Analyzer Model T100	Serial Number:	
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16				Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin		Reason
-				Date (dd/mm/yyyy)	Hour (xx:xx)		Hour (xx:xx)	
34	24-Oct-16	TH	Invalidate	13-Oct-16	07:00	13-Oct-16	09:00	Monthly calibration
35	25-Nov-16	тн	Data Review	10-Oct-16	01:00	10-Oct-16	03:00	An elevated SO ₂ level of 13.7 ppb was measured at the Courtice WPCP station on October 10 at 1:00 without a corresponding trend at the Rundle Road Station. Winds were from the north-northeast for which Highway 401 and CN railroad were upwind. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
36	25-Nov-16	тн	Data Review	11-Oct-16	02:00	11-Oct-16	05:00	An elevated SO ₂ level of 19 ppb was measured at the Courtice WPCP station on October 11 at 5:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the north - potential emission sources in this direction incldue Highway 401, local roads or the CN railroad. Therefore, the data was deemed valid.
37	25-Nov-16	ТН	Data Review	14-Oct-16	07:00	14-Oct-16	07:00	An elevated SO ₂ level of 41 ppb was measured at the Courtice WPCP station on October 14 at 7:00 without a corresponding trend at the Rundle Road Station. Slightly elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the northeast for which the DYEC, Highway 401, Highway 418 construction activities and CN railroad were upwind. Upon review of the DYEC continuous emissions monitoring system online, the concentration of SO ₂ emitted from both boilers on October 14, 2016 at 7:00 were 0 mg/Rm³. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
38	25-Nov-16	ТН	Data Review	16-Oct-16	22:00	16-Oct-16	22:00	An elevated SO ₂ level of 23 ppb was measured at the Courtice WPCP station on October 16 at 22:00 without a corresponding trend at the Rundle Road Station. Slightly elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the northwest - potential emission sources in this direction include Highway 401, local roads or the CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
39	25-Nov-16	ТН	Data Review	19-Oct-16	20:00	20-Oct-16	00:00	An elevated SO ₂ level of 21 ppb was measured at the Courtice WPCP station on October 19 at 22:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the north - potential emission sources in this direction incldue Highway 401, local roads or the CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
40	25-Nov-16	ТН	Data Review	25-Oct-16	20:00	26-Oct-16	07:00	An elevated SO ₂ level of 18 ppb was measured at the Courtice WPCP station on October 25 at 2:00 without a corresponding trend at the Rundle Road Station. Slightly elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the north - potential emission sources in this direction incldue Highway 401, local roads or the CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
41	25-Nov-16	ТН	Data Review	31-Oct-16	17:00	31-Oct-16	17:00	An elevated SO ₂ level of 23 ppb was measured at the Courtice WPCP station on October 31 at 17:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the north-northwest - potential emission sources in this direction include Highway 401, local roads or the CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
42	1-Dec-16	TH	Invalidate	25-Nov-16	08:00	25-Nov-16	11:00	Monthly calibration and annual maintenance/ calibration

Project Name	Durham York Ene	rgy Centre Ambient	Air Monitoring Program					
Contact		nie Lim / Tim Hung		905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:		N/A	Station Name:	Courtice WPCP Station	(Upwind)			
Station address:	Courtice Water Po	ollution Control	Emitter Address:	The Region of Durham,		d. Whitby. ON		
	Plant					.,		
Pollutant or parameter:	SO ₂	Instrument make	& model:	Teledyne Monitor Labs	Sulphur Dioxide	Analyzer Model T100	Serial Number:	565
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16				Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin	g.	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
43	15-Dec-16	TH	Data Review	1-Nov-16	19:00	2-Nov-16	05:00	
								An elevated SO₂ level of 20.8 ppb was measured at the Courtice WPCP station on November 2 at 0:00 without a
								corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion
								source. Winds were from the north - potential emission sources in this direction include Highway 401, local roads or the
								CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
								Therefore, the data was deemed valid.
44	15-Dec-16	TH	Data Review	6-Nov-16	18:00	6-Nov-16	18:00	
								An elevated SO₂ level of 20.5 ppb was measured at the Courtice WPCP station on November 6 at 18:00 without a
								corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion
								source. Winds were from the north - potential emission sources in this direction incldue Highway 401, local roads or the
								CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
								Therefore, the data was deemed valid.
45	15-Dec-16	TH	Data Review	9-Nov-16	22:00	10-Nov-16	02:00	
								An elevated SO ₂ level of 19.3 ppb was measured at the Courtice WPCP station on November 9 at 22:00 without a
								corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion
								source. Winds were from the northwest - potential emission sources in this direction include Highway 401, local roads or
								the CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
								Therefore, the data was deemed valid.
46	15-Dec-16	TH	Data Review	11-Nov-16	23:00	12-Nov-16	02:00	
								An elevated SO ₂ level of 26.8 ppb was measured at the Courtice WPCP station on November 12 at 2:00 without a
								corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion
								source. Winds were from the northwest - potential emission sources in this direction include Highway 401, local roads or
								the CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
								Therefore, the data was deemed valid.
47	15-Dec-16	TH	Data Review	14-Nov-16	22:00	15-Nov-16	01:00	
								An elevated SO₂ level of 28.1 ppb was measured at the Courtice WPCP station on November 14 at 22:00 without a
								corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion
								source. Winds were from the north - potential emission sources in this direction incldue Highway 401, local roads or the
								CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
								Therefore, the data was deemed valid.
48	15-Dec-16	TH	Data Rovious	22-Nov-16	21:00	23-Nov-16	07:00	
48	12-D6C-19	I IH	Data Review	22-NOV-1b	21:00	23-INOV-1b	07:00	An elevated SO₂ level of 18.9 ppb was measured at the Courtice WPCP station on November 23 at 1:00 without a
								corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion
					1			source. Winds were from the north - potential emission sources in this direction incldue Highway 401, local roads or the
								CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
								Therefore, the data was deemed valid.
					<u> </u>			
49	19-Dec-16	TH	Invalidate	12-Dec-16	07:00	12-Dec-16	09:00	Monthly calibration
50	19-Dec-16	TH	Invalidate	13-Dec-16	10:00	13-Dec-16	10:00	MOECC audit.
51	4-Jan-17	TH	Data Roviou	2 Dos 16	02:00	0 Dos 16	11:00	Instances of concerting zone values in this time-frames were due to pogetive instrument zone delife less than 5 and 5 and
31	4-Jd11-1/	in.	Data Review	2-Dec-16	02.00	9-Dec-16	11.00	Instances of repeating zero values in this timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
	1	l	l .					the Modeo Ambient Monitoring duideline, no drift correction was applied.

Project Name	Durham York Energ	y Centre Ambient	Air Monitoring Program					
Contact	Greg Crooks / Conn	ie Lim / Tim Hung	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:	N,	/A	Station Name:	Courtice WPCP Station ((Upwind)			
Station address:	Courtice Water Pol	lution Control	Emitter Address:	The Region of Durham,	605 Rossland Ro	l, Whitby, ON		
	Plant							
Pollutant or parameter:	SO ₂	Instrument make	& model:	Teledyne Monitor Labs	Sulphur Dioxide	Analyzer Model T100	Serial Number:	565
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16				Time Zone : EST
Edit#	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
52	4-Jan-17	TH	Data Review	3-Dec-16	23:00	4-Dec-16	08:00	
								An elevated SO ₂ level of 14.7 ppb was measured at the Courtice WPCP station on December 4 at 5:00 without a corresponding trend at the Rundle Road Station. Slightly elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the north and the west over this period. Winds were blowing from the north during WPCP operating hours - from the direction of the WPCP chemical building. Idling trucks have been observed next to the Chemical Building (off-loading supplies). Elevated measurements may have been due to an idling truck, Highway 401, local roads, agricultural activities or the CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
53	4-Jan-17	ТН	Data Review	6-Dec-16	01:00	6-Dec-17	04:00	An elevated SO ₂ level of 24.4 ppb was measured at the Courtice WPCP station on December 6 at 3:00 without a corresponding trend at the Rundle Road Station. Elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the north - potential emission sources in this direction include Highway 401, local roads or the CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
54	4-Jan-17	TH	Data Review	10-Dec-16	03:00	11-Dec-16	08:00	An elevated SO ₂ level of 39.7 ppb was measured at the Courtice WPCP station on December 11 at 7:00 without a corresponding trend at the Rundle Road Station. Slighlty elevated NOx levels were also measured, suggesting a local combustion source. Winds were from the north - potential emission sources in this direction incldue Highway 401, local roads or the CN railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
55	17-Jan-17	TH	Data Review	1-Oct-16	02:00	1-Oct-16	10:00	Instances of repeating zero values in these timeframes were due to measurements less than 0.05 ppb which was
				5-Oct-16	10:00	5-Oct-16	15:00	rounded to Oppb

Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program					
Contact		nie Lim / Tim Hung		905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:		I/A	Station Name:	Courtice WPCP Station	(Upwind)			
Station address:	Courtice Water Po	Ilution Control	Emitter Address:	The Region of Durham,	605 Rossland Ro	d, Whitby, ON		
Pollutant or parameter:	SO ₂	Instrument make	& model:	Teledyne Monitor Labs	Sulphur Dioxide	Analyzer Model T100	Serial Number:	565
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16	i			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
	17-Jan-17	TH	Data Review	8-Oct-16	17:00	9-Oct-16	01:00	
				10-Oct-16	11:00	10-Oct-16	17:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As
				1-Dec-16	12:00	1-Dec-16	19:00	per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
				10-Dec-16	19:00	11-Dec-16	00:00	per the Morece Ambient Monitoring Guideline, no unit correction was applied.
				11-Dec-16	14:00	12-Dec-16	05:00	
				25-Dec-16	12:00	26-Dec-16	03:00	
	17-Jan-17	TH	Data Review	2-Oct-16	13:00	2-Oct-16	18:00	Instances of repeating 0.3ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.3ppb
	17-Jan-17	TH	Data Review	23-Oct-16	02:00	23-Oct-16	21:00	Instances of repeating 0.3ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.3ppb
	17-Jan-17	TH	Data Review	24-Oct-16	19:00	25-Oct-16	05:00	Instances of repeating 0.1ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.1ppb
56	17-Jan-17	TH	Data Review	27-Oct-16	21:00	28-Oct-16	02:00	Instances of repeating 0.3ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.3ppb
	17-Jan-17	TH	Data Review	5-Nov-16	19:00	6-Nov-16	00:00	Instances of repeating 0.3ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.3ppb
	17-Jan-17	TH	Data Review	17-Nov-16	20:00	18-Nov-16	01:00	Instances of repeating 0.6ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.6ppb
	17-Jan-17	TH	Data Review	26-Nov-16	05:00	26-Nov-16	10:00	Instances of repeating 0.6ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.6ppb
	17-Jan-17	TH	Data Review	17-Dec-16	05:00	17-Dec-16	10:00	Instances of repeating 0.3ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.3ppb
	17-Jan-17	TH	Data Review	24-Dec-16	16:00	25-Dec-16	00:00	Instances of repeating 0.1ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.1ppb
	17-Jan-17	TH	Data Review	27-Dec-16	07:00	28-Dec-16	15:00	Instances of repeating 0.1ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.1ppb
	17-Jan-17	TH	Data Review	29-Dec-16	15:00	29-Dec-16	21:00	Instances of repeating 0.3ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.3ppb

Examples of Acceptable Edit Actions:

Add offset of

Delete hours

Zero Correction

Slope Correction

Manual data entry for missing, but collected data

Invalidating span & zero check data

Invalidating data due to equipment malfunctions and power failures.

Invalidating data when instrumentation off-line

Marking data as out-of-range

EDIT LOG TABLE

EDIT LOG TABLE	Durham Vark Fran	au Contro Ambient	Air Monitoring Drogge					
Project Name Contact	Greg Crooks / Con		Air Monitoring Program	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:		I/A	Station Name:	Courtice WPCP Station		<u> </u>		greg.crooks@stantec.com, connie.iim@stantec.com, tim.nung@stantec.com
Station number: Station address:	Courtice Water Po		Emitter Address:	The Region of Durham		d Milithia ON		
				API Model 200E Chemi			Carriel Normale and	CT.
Pollutant or parameter:		Instrument make				naiyzer	Serial Number:	675 Time Zone : EST
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-1				
Edit #	Edit date	Editor's Name	Edit Action	Startin		Endin		Reason
F.C.	24.0.1.46	711	La Palata	Date (dd/mm/yyyy)	Hour (xx:xx)			Activities and the state of the
56 57	24-Oct-16 25-Nov-16	TH TH	Invalidate Data Review	13-Oct-16 11-Oct-16	07:00 06:00	13-Oct-16 11-Oct-16	08:00 06:00	Monthly calibration
·								An elevated NOx level of 54 ppb was measured at the Courtice WPCP station on October 11 at 6:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was larger than NQ which suggests a nearby combustion source. Slightly elevated SO ₂ concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north - from the WPCP Chemical Building to the station. Idling trucks have been observed next to the Chemical Building (off-loading supplies) – since this measurement occurred during WPCP operating hours, the elevated measurement may have been due to an idling truck, the CN railroad or Highway 401. The data was deemed valid.
58	25-Nov-16	ТН	Data Review	19-Oct-16	20:00	19-Oct-16	23:00	An elevated NOx level of 55 ppb was measured at the Courtice WPCP station on October 19 at 22:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was larger than NQ which suggests a nearby combustion source. Elevated SO ₂ concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north, the elevated measurement may have been due to the CN railroad or Highway 401. The data was deemed valid.
59	25-Nov-16	тн	Data Review	31-Oct-16	18:00	31-Oct-16	18:00	An elevated NOx level of 88 ppb was measured at the Courtice WPCP station on October 31 at 18:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was larger than NQ which suggests a nearby combustion source. Slightly elevated SO ₂ concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north-northwest - the elevated measurement may have been due to the CN railroad or Highway 401. Therefore, the data was deemed valid.
60	1-Dec-16	TH	Invalidate	25-Nov-16	08:00	25-Nov-16	11:00	Monthly calibration
61	15-Dec-16	тн	Data Review	1-Nov-16	18:00	1-Nov-16	06:00	An elevated NOx level of 69.9 ppb was measured at the Courtice WPCP station on November 2 at 6:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was larger than NQ which suggests a nearby combustion source. Elevated SO ₂ concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north - the elevated measurement may have been due to the CN railroad or Highway 401. Therefore, the data was deemed valid.
62	15-Dec-16	ТН	Data Review	4-Nov-16	18:00	4-Nov-16	18:00	An elevated NOx level of 50.4 ppb was measured at the Courtice WPCP station on November 4 at 18:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was larger than NQ which suggests an nearby emissions source. Winds were blowing from the northwest for which local roads and the CN railroad were upwind. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid
63	15-Dec-16	ТН	Data Review	6-Nov-16	19:00	7-Nov-16	08:00	An elevated NOx level of 70.8 ppb was measured at the Courtice WPCP station on November 7 at 8:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was larger than NQ which suggests a nearby combustion source. Slightly elevated SO ₂ concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north, the elevated measurement may have been due to an the CN railroad or Highway 401. Therefore, the data was deemed valid.
64	15-Dec-16	ТН	Data Review	8-Nov-16	07:00	8-Nov-16	07:00	An elevated NOx level of 64.8 ppb was measured at the Courtice WPCP station on November 8 at 7:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was larger than NQ which suggests a nearby combustion source. Slightly elevated SQ, concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north-northeast - the elevated measurement may have been due to the CN railroad or Highway 401. The data was deemed valid.
65	15-Dec-16	TH	Data Review	23-Nov-16	01:00	23-Nov-16	01:00	An elevated NOx level of 65.2 ppb was measured at the Courtice WPCP station on November 23 at 1:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was larger than NQ which suggests a nearby combustion source. Elevated SO ₂ concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north -the elevated measurement may have been due to the CN railroad or Highway 401. The data was deemed valid.

Project Name	Durham York Ener	rgy Centre Ambient	Air Monitoring Program					
Contact	Greg Crooks / Con	nie Lim / Tim Hung	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:	N	I/A	Station Name:	Courtice WPCP Station				
Station address:	Courtice Water Po	Ilution Control	Emitter Address:	The Region of Durham,	605 Rossland Ro	l, Whitby, ON		
Pollutant or parameter:	NOx	Instrument make	& model:	API Model 200E Chemile	uminescence An	alyzer	Serial Number:	675
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16				Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
66	15-Dec-16	тн	Data Review	27-Nov-16	17:00	27-Nov-16	23:00	An elevated NOx level of 40.5 ppb was measured at the Courtice WPCP station on November 27 at 20:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was similar to NQ which suggests an intermediate distance emissions source. Slightly elevated SO_2 concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north, the elevated measurement may have been due to the CN railroad or Highway 401. Therefore, the data was deemed valid.
67	15-Dec-16	ТН	Data Review	29-Nov-16	22:00	30-Nov-16	02:00	An elevated NOx level of 70.7 ppb was measured at the Courtice WPCP station on November 30 at 0:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was larger than NQ which suggests a nearby combustion source. Slightly elevated SQ, concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north-northeast, the elevated measurement may have been due to the CN railroad or Highway 401. Therefore, the data was deemed valid.
68	19-Dec-16	TH	Invalidate	12-Dec-16	07:00	12-Dec-16	10:00	Monthly calibration
69	19-Dec-16	TH	Invalidate	13-Dec-16	10:00	13-Dec-16	11:00	MOECC audit
70	19-Dec-16	TH	Invalidate	13-Dec-16	14:00	13-Dec-16	16:00	Annual calibration. Replaced NOx monitor with spare and calibrated.
71	4-Jan-17	ТН	Data Review	15-Dec-16	23:00	16-Dec-16	00:00	An elevated NOx level of 54.7 ppb was measured at the Courtice WPCP station on December 15 at 23:00 without a corresponding trend at the Rundle Road Station. For this hour, the measured NO concentration was lower than NQ which suggests an emissions source located relatively far away. Slightly elevated SO ₂ concentrations at the Courtice WPCP station were also noted in this time period. Winds were blowing from the north, the elevated measurement may have been due to an the CN railroad or Highway 401. Therefore, the data was deemed valid.
73	17-Jan-17	TH	Data Review	1-Oct-16	00:00	1-Oct-16	08:00	
				3-Oct-16	11:00	3-Oct-16	17:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As
				5-Oct-16	09:00	5-Oct-16	15:00	per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
				9-Oct-16	08:00	9-Oct-16	14:00	
				10-Oct-16	10:00	10-Oct-16	17:00	
74	17-Jan-17	TH	Data Review	27-Dec-16	10:00	27-Dec-16	15:00	Instances of repeating 0.6ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.6ppb

Examples of Acceptable Edit Actions:

Add offset of
Delete hours
Zero Correction
Slope Correction
Manual data entry for missing, but collected data
Invalidating span & zero check data
Invalidating data due to equipment malfunctions and power failures.
Invalidating data when instrumentation off-line
Marking data as out-of-range

EDIT LOG TABLE

EDIT LOG TABLE								
Project Name	Durham York Energy Centre Ambient Air Monitoring Program							
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:	greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com		
	Connie Lim / Tim							
	Hung							
Station number:	N/A		Station Name:	Courtice WPCP Station				
Station address:	Courtice Water Pollution Control		Emitter Address:	The Region of Durham, 605 Rossland Rd, Whitby, ON				
Pollutant or parameter:	eter: PM _{2.5} Instrument make			Thermo Sharp 5030 Synchronized Hybrid Ambient Real-time S			Serial Number:	E-1569
		& model:		Particulate Monitor				
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16 Time Zone : EST				
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)	
28	24-Oct-16	TH	Invalidate	13-Oct-16	07:00	13-Oct-16	07:00	Monthly calibration
29	1-Dec-16	TH	Invalidate	25-Nov-16	08:00	25-Nov-16	08:00	Monthly calibration
30	2-Dec-16	TH	Invalidate	26-Nov-16	09:00	28-Nov-16	09:00	Pump was shut off when field technician arrived on November 28. Upon review of the collected data, repeating
								measurements of approximately 0.16 μg/m³ were identified. This data was invalidated.
31	19-Dec-16	TH	Invalidate	12-Dec-16	07:00	12-Dec-16	08:00	Monthly calibration
32	19-Dec-16	TH	Invalidate	13-Dec-16	10:00	13-Dec-16	11:00	MOECC audit
33	17-Jan-17	TH	Data Review	21-Nov-16	19:00	22-Nov-16	00:00	Instances of repeating 1.7µg/m³ measurements. Data was reviewed and the measurements are changing but were
								rounded to 1.7µg/m ³
								Tourised to 117 Mg/111
					1			

Examples of Acceptable Edit Actions:

Add offset of Delete hours

Zero Correction

Slope Correction

. Manual data entry for missing, but collected data

Invalidating span & zero check data

Invalidating data due to equipment malfunctions and power failures.

Invalidating data when instrumentation off-line

Marking data as out-of-range

Project Name	Durham York Energ	v Centre Ambient	Air Monitoring Program						
	Greg Crooks /			905-944-7777	E-mail:		greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com		
	Connie Lim / Tim							g	
	Hung								
Station number:	N,	/A	Station Name:	Courtice WPCP Station					
Station address:	Courtice Water Pol	lution Control	Emitter Address:	The Region of Durham,	605 Rossland Rd	l, Whitby, ON			
Pollutant or parameter:	Temperature	Instrument make	& model:	Campbell Scientific Mod	del HMP60		Serial Number:		
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16				Time Zone : EST	
Edit#	Edit date	Editor's Name	Edit Action	Starting		Ending	g	Reason	
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)		
1	27-Jul-16	TH	Invalidate	22-Jul-16	09:00	22-Jul-16	10:00	Hours during which data logger was removed for calibration (spare installed) was invalidated.	
2	26-Sep-16	TH	Invalidate	16-Sep-16	09:00	16-Sep-16	10:00	Annual instrument calibration	

EDIT LOG TABLE									
Project Name	Durham York Energ	gy Centre Ambient	Air Monitoring Program						
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com	
	Connie Lim / Tim								
	Hung								
Station number:	N	/A	Station Name:	Courtice WPCP Station					
Station address:	Courtice Water Pol	lution Control	Emitter Address:	The Region of Durham, 605 Rossland Rd, Whitby, ON					
Pollutant or parameter:	Rainfall	Instrument make	& model:	Texas Electronic TE525N	И		Serial Number:		
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16	i			Time Zone : EST	
Edit #	Edit date	Editor's Name	Edit Action	Starting	1	Endin	g	Reason	
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)		
4	27-Jul-16	TH	Invalidate	22-Jul-16	09:00	22-Jul-16	10:00	Hours during which data logger was removed for calibration (spare installed) was invalidated.	
5	26-Sep-16	TH	Invalidate	16-Sep-16	08:00	16-Sep-16	08:00	Annual calibration	
6	26-Sep-16	TH	Invalidate	16-Sep-16	09:00	16-Sep-16	10:00	Data logger calibration	

Examples of Acceptable Edit Actions:

Add offset of

Delete hours Zero Correction

Slope Correction

Manual data entry for missing, but collected data Invalidating span & zero check data

Invalidating data due to equipment malfunctions and power failures.

Invalidating data when instrumentation off-line

Marking data as out-of-range

EDIT EOG TADEE										
Project Name	Durham York Energ	gy Centre Ambient	Air Monitoring Program							
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com		
	Connie Lim / Tim									
	Hung									
Station number:	N,	/A	Station Name:	Courtice WPCP Station						
Station address:	Courtice Water Pol	lution Control	Emitter Address:	The Region of Durham, 605 Rossland Rd, Whitby, ON						
Pollutant or parameter:	Relative Humidity	Instrument make	& model:	Campbell Scientific Mod	Campbell Scientific Model HMP60					
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16				Time Zone : EST		
Edit#	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason		
				Date (dd/mm/yyyy) Hour (xx:xx)		Date (dd/mm/yyyy)	Hour (xx:xx)			
1	27-Jul-16	TH	Invalidate	22-Jul-16	09:00	22-Jul-16	10:00	Hours during which data logger was removed for calibration (spare installed) was invalidated.		
2	26-Sep-16	TH	Invalidate	16-Sep-16	09:00	16-Sep-16	10:00	Annual instrument calibration		

EDIT LOG TABLE

LDIT LOG TABLE											
Project Name	Durham York Energ	gy Centre Ambient	Air Monitoring Program								
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com			
	Connie Lim / Tim										
	Hung										
Station number:	N,	/A	Station Name:	Courtice WPCP Station							
Station address:	Courtice Water Pol	lution Control	Emitter Address:	The Region of Durham,	605 Rossland Rd	, Whitby, ON					
Pollutant or parameter:	Atmospheric	Instrument make	& model:	Campbell Scientific Mod	lel CS106		Serial Number:				
	Pressure										
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16				Time Zone : EST			
Edit#	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason			
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)				
1	27-Jul-16	TH	Invalidate	22-Jul-16	09:00	22-Jul-16	10:00	Hours during which data logger was removed for calibration (spare installed) was invalidated.			
2	26-Sep-16	TH	Invalidate	16-Sep-16	08:00	16-Sep-16	10:00	Barometer calibration.			

LDII LOG IMBLE												
Project Name	Durham York Energ	y Centre Ambient	Air Monitoring Program									
Contact	Lisa Heatherington		Phone:	N/A	N/A E-mail:		Lisa.Hetherington@Durham.ca					
Station number:	N/	/A	Station Name:	Courtice WPCP Station	rtice WPCP Station							
Station address:	Courtice Water Pol	lution Control	Emitter Address:	The Region of Durham,	605 Rossland Ro	d, Whitby, ON						
Pollutant or parameter:	Wind Speed/Wind	Instrument make	& model:	N/A			Serial Number:					
	direction											
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16			Time Zone : EST					
Edit #	Edit date	Editor's Name	Edit Action	Starting		Endin	g	Reason				
				Date (dd/mm/yyyy)	Hour (xx:xx)	Date (dd/mm/yyyy)	Hour (xx:xx)					
1	8-Nov-16	TH	Invalidate	6-Nov-16	00:00	6-Nov-16	00:00	Data unavailable from Courtice during the transition back to standard time (the met tower run by the Region at Courtice				
								uses local time)				

Project Name	Durham York Ene	rgy Centre Ambien	t Air Monitoring Program					
Contact	Greg Crooks / Cor	nnie Lim / Tim Hun	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:	45	5200	Station Name:	Rundle Road Sta	ition			
Station address:	Rundle Road / Bas	seline Road	Emitter Address:	The Region of D	urham, 605 Ros	ssland Rd, Whith	y, ON	
Pollutant or parameter:	SO ₂	Instrument make	& model:	Teledyne Monitor Labs Sulphur		r Dioxide	Serial Number:	565
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-1	5			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Start	ting	En	nding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
30	24-Oct-16	TH	Invalidate	13-Oct-16	09:00	13-Oct-16	11:00	October Monthly calibration
31	24-Oct-16	TH	Invalidate	20-Oct-16	07:00	20-Oct-16	11:00	Annual maintenance/ calibration
32	23-Nov-16	TH	Invalidate	11-Nov-16	07:00	11-Nov-16	08:00	November monthly calibration
33	25-Nov-16	TH	Data review	21-Oct-16	01:00	27-Oct-16	05:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient
								Monitoring Guideline, no drift correction was applied.
				30-Oct-16	09:00	31-Oct-16	23:00	
34	15-Dec-16	TH	Data review	3-Nov-16	23:00	10-Nov-16	06:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient
34	15-Dec-16	IH	Data review	14-Nov-16	22:00	18-Nov-16	11:00	Monitoring Guideline, no drift correction was applied.
35	19-Dec-16	TH	Invalidate	12-Dec-16	14:00	12-Dec-16	15:00	Monthly calibration.
				12-Dec-16	16:00	13-Dec-16	11:00	Calibration on 12-Dec used VES's calibration bottle that was found to be off-spec and the unit was re-calibrated with the MOECC cal gas. Slope correction
36	19-Dec-16	TH	Slope correction					of 0.636 applied using the difference in span between Valley's gas bottle calibration and the MOECC's gas bottle calibration to correct the data in this
								timeframe.
37	19-Dec-16	TH	Invalidate	13-Dec-16	12:00	13-Dec-16	12:00	MOECC audit.
38	19-Dec-16	TH	Invalidate	13-Dec-16	13:00	13-Dec-16	14:00	MOECC Audit/Calibration.
39	19-Dec-16	TH	Invalidate	17-Dec-16	18:00	17-Dec-16	20:00	Evidence of power outage.
	0.1.45			9-Dec-16	03:00	11-Dec-16	19:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient
40	3-Jan-17	TH	Data review					Monitoring Guideline, no drift correction was applied.
				6-Oct-16	05:00	6-Oct-16	10:00	Instance of repeating 0.4ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.4ppb
				8-Oct-16	07:00	8-Oct-16	17:00	Instance of repeating 0.5ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.5ppb
				9-Oct-16	14:00	9-Oct-16	20:00	Instance of repeating 0.2ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.2ppb
	47.47			10-Oct-16	09:00	10-Oct-16	14:00	Instance of repeating 0.1ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.1ppb
41	17-Jan-17	TZ	Data review	10-Oct-16	21:00	11-Oct-16	05:00	Instance of repeating 0.2ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.2ppb
				14-Oct-16	13:00	14-Oct-16	18:00	Instance of repeating 0.7ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.7ppb
				17-Oct-16	18:00	17-Oct-16	23:00	Instance of repeating 0.8ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.8ppb
				29-Nov-16	09:00	29-Nov-16	14:00	Instance of repeating 0.2ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.2ppb
				27-Oct-16	15:00	28-Oct-16	07:00	Instances of repeating zero values in these timeframes were due to values less than 0.05 and/or negative instrument zero drift less than -5 ppb. As per
								the MOECC Ambient Monitoring Guideline, no drift correction was applied.
		_		1-Nov-16	22:00	2-Nov-16	03:00	1
42	17-Jan-17	TZ	Data review	10.20		0.1		
				25-Nov-16	18:00	25-Nov-16	23:00	†
				25 1101 10	23.00	22 20	25.00	
		+	1	1	1	ļ	1	1

Project Name	Durham York Ene	rgy Centre Ambien	t Air Monitoring Program	ı				
Contact	Greg Crooks / Cor	nnie Lim / Tim Hun	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Station number:	4:	5200	Station Name:	Rundle Road Sta	ation			
Station address:	Rundle Road / Ba	seline Road	Emitter Address:	The Region of D	urham, 605 Ros	ssland Rd, Whith	y, ON	
Pollutant or parameter:	SO₂	Instrument make	& model:	Teledyne Monit	or Labs Sulphu	r Dioxide	Serial Number:	565
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-1	6			Time Zone: EST
Edit #	Edit date	Editor's Name	Edit Action	Start	ting	Er	nding	Reason
				Date	Hour (xx:xx)		Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
				29-Oct-16	07:00	1-Nov-16	01:00	Instances of repeating zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
				2-Nov-16	16:00	3-Nov-16	00:00	
43	17-Jan-17		Data and income	18-Nov-16	15:00	20-Nov-16	13:00	
43	3 17-Jan-17 12	TZ Data review	21-Nov-16	03:00	25-Nov-16	14:00		
			26-Nov-16	12:00	28-Nov-16	07:00		
				3-Dec-16	21:00	4-Dec-16	10:00	
44	17-Jan-17	TZ	Data review	2-Dec-16	17:00	2-Dec-16	23:00	Instances of repeating zero values in these timeframes were due to values less than 0.05ppb. Data was reviewed and the measurements are changing but were rounded to 0.0ppb.
	40.1 47			5-Dec-16	23:00	6-Dec-16	07:00	Instances of repeating zero values in these timeframes were due to values less than 0.05 and/or negative instrument zero drift less than -5 ppb. As per the MOECC Ambient Monitoring Guideline, no drift correction was applied.
45	18-Jan-17	TZ	Data review	8-Dec-16	11:00	8-Dec-16	17:00	
				15-Dec-16	15:00	15-Dec-16	20:00	Instance of repeating 0.5ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.5ppb
				17-Dec-16	10:00	17-Dec-16	15:00	Instance of repeating 0.8ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.8ppb
				18-Dec-16	05:00	18-Dec-16	10:00	Instance of repeating 0.7ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.7ppb
46	18-Jan-17	TZ	Data review	21-Dec-16	07:00	21-Dec-16	14:00	Instance of repeating 1.2ppb measurements. Data was reviewed and the measurements are changing but were rounded to 1.2ppb
40	10-1411-1/	14	Data review	24-Dec-16	03:00	24-Dec-16	09:00	Instance of repeating 0.7ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.7ppb
				27-Dec-16	06:00	27-Dec-16	22:00	Instance of repeating 0.5ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.5ppb
				28-Dec-16	03:00	28-Dec-16	08:00	Instance of repeating 0.4ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.4ppb
				30-Dec-16	18:00	31-Dec-16	01:00	Instance of repeating 0.5ppb measurements. Data was reviewed and the measurements are changing but were rounded to 0.5ppb

Project Name	Durham York Ene	rgy Centre Ambient	Air Monitoring Program					
ontact	Greg Crooks / Cor	nnie Lim / Tim Hung	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
tation number:	4	5200	Station Name:	Rundle Road Sta	ation			
tation address:	Rundle Road / Ba	seline Road	Emitter Address:	The Region of D	urham, 605 Ros	sland Rd, White	by, ON	
ollutant or parameter:	NOx	Instrument make	& model:	API Model 200E	Chemilumines	ence Analyzer	Serial Number:	675
ata edit period	Start date:	1-Oct-16	End date:	31-Dec-1	6			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Star	ting	Er	nding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
29	24-Oct-16	TH	Invalidate	13-Oct-16	09:00	13-Oct-16	11:00	October monthly calibration
30	24-Oct-16	TH	Invalidate	20-Oct-16	06:00	20-Oct-16	11:00	Annual maintenance/ calibration. Installed a spare while analyzer maintenance was performed offsite.
31	23-Nov-16	TH	Invalidate	11-Nov-16	07:00	11-Nov-16	12:00	Calibrated and removed spare analyzer. Reinstalled original analyzer and calibrated.
32	25-Nov-16	TH	Data review	20-Oct-16	19:00	26-Oct-16	05:00	Instances of repeating NO2 or NOx zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC
				29-Oct-16	16:00	31-Oct-16	14:00	Ambient Monitoring Guideline, no drift correction was applied.
33	1-Dec-16	TH	Invalidate	25-Nov-16	14:00	25-Nov-16	16:00	Instrument off-line for servicing
34	6-Dec-16	TH	Invalidate	1-Dec-16	01:00	1-Dec-16	01:00	Evidence of power failure. Invalidated 1 minute of data. Data recovery in the hour was still acceptable.
				3-Nov-16	01:00	4-Nov-16	13:00	
35	15-Dec-16	T11	TH Data review	5-Nov-16	21:00	6-Nov-16	13:00	Instances of repeating NO2 or NOx zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC
35	15-Dec-16	IH	Data review	9-Nov-16	00:00	9-Nov-16	16:00	Ambient Monitoring Guideline, no drift correction was applied.
26				20-Nov-16	06:00	22-Nov-16	05:00	
36	19-Dec-16	TH	Invalidate	12-Dec-16	14:00	12-Dec-16	16:00	Monthly calibration
37	19-Dec-16	TH	Invalidate	13-Dec-16	12:00	13-Dec-16	12:00	MOECC audit
38	19-Dec-16	TH	Invalidate	17-Dec-16	18:00	17-Dec-16	20:00	Evidence of power outage
39	19-Dec-16			11-Nov-16	18:00	25-Nov-16	13:00	Applied a linear zero drift correction of 10 ppb (start) to 16.1 ppb (end) to NO measurements and a step zero drift correction of 10.9ppb to NOx
		T11	7					measurements during the instrument stabilization period after the NOx analyzer was re-installed after routine overhaul. Unit was re-zeroed on 25-N
		TH	Zero correction					NOx and NO measurements were adjusted based on the measurement readings during the zeros and review of the data in this time frame. NO 2 was
								calculated from the drift corrected NOx and NO measurements.
								An elevated NOx level of 37ppb was measured at the Rundle Road station on December 12 at 8:00 without a corresponding trend at the Courtice WP
40	2 1 47	T11	Data and an	12 0 16	00.00	12 D 16	12:00	Station. For this hour, the measured NO concentration was approximately the same as NO 2 which suggests an intermediate distance emissions source
40	3-Jan-17	TH	Data review	12-Dec-16	06:00	12-Dec-16	12:00	Winds were blowing from the west - the elevated readings occurred during the daytime and may have been due to local roads. The data was deemed
								valid.
41	19-Jan-17	TZ	Data review	28-Oct-16	00:00	28-Oct-16	13:00	Instances of repeating NO2 zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient
								Monitoring Guideline, no drift correction was applied.
42	19-Jan-17	TZ	Data review	3-Dec-16	10:00	3-Dec-16	15:00	Instances of repeating NO2 zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient
								Monitoring Guideline, no drift correction was applied.
43	19-Jan-17	TZ	Data review	9-Dec-16	20:00	10-Dec-16	03:00	Instances of repeating NO ₂ zero values in these timeframes were due to negative instrument zero drift less than -5 ppb. As per the MOECC Ambient
								Monitoring Guideline, no drift correction was applied.
								V COLUMN TO THE PROPERTY OF TH
-								
								1

Examples of Acceptable Edit Actions: Add offset of

Add offset of Delete hours Zero Correction

Slope Correction

Manual data entry for missing, but collected data

Invalidating span & zero check data Invalidating data due to equipment malfunctions and power failures. Invalidating data when instrumentation off-line

Marking data as out-of-range

Project Name	Durham York Fner	rgy Centre Ambien	t Air Monitoring Program					
Contact	Greg Crooks /				E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
	Connie Lim / Tim			905-944-7777				
	Hung							
Station number:		200	Station Name:	Rundle Road Sta				
Station address:	Rundle Road / Bas		Emitter Address:	The Region of D				
Pollutant or parameter:	PM _{2.5}	Instrument make	& model:	Thermo Sharp 5		ed Hybrid	Serial Number:	E-1569
				Ambient Real-ti				
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16				Time Zone : EST
Edit#	Edit date	Editor's Name	Edit Action	Start			ding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
46	24-Oct-16	TH	Invalidate	(dd-mm-yy) 13-Oct-16	09:00	(dd-mm-yy) 13-Oct-16	10:00	October monthly calibration
47	24-Oct-16	TH	Invalidate	18-Oct-16	05:00	18-Oct-16	10:00	Annual maintenance/ calibration
48	23-Nov-16	TH	Invalidate	11-Nov-16	07:00	11-Nov-16	11:00	November monthly calibration
49	25-Nov-16	TH	Data review	9-Oct-16	09:00	9-Oct-16	17:00	Elevated level of up to 33 µg/m³ measured on October 9 at 11:00 without a corresponding trend at the Oshawa or Courtice stations. The wind was
								blowing from the north - potential emission sources in this direction include agricultural activities or vehicles along Baseline Road. Minute data was
								reviewed and measurements were reasonably consistent throughout this time period. The data was deemed valid.
50	25-Nov-16	TH	Data review	10-Oct-16	09:00	10-Oct-16	18:00	Elevated levels of up to 59 μg/m³ were measured on October 10 at 16:00 without a corresponding trend at the Courtice or Oshawa station. Winds were
								generally blowing from the west-southwest - the elevated readings occurred during the daytime and may have been due to Highway 418 construction
								activities, the CP railroad or Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
					1			Therefore, the data was deemed valid.
51	25-Nov-16	TH	Data review	11-Oct-16	08:00	11-Oct-16	19:00	Elevated levels of up to 41 µg/m³ were measured on October 11 at 19:00 without a corresponding trend at the Courtice or Oshawa stations. Winds were
								generally blowing from the east-southeast - the elevated readings may have been due to the CP railroad or the St. Mary's Cement plant. Minute data was
								reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
	25.11 46			42.0 . 46	00.00	10.0 : 10	20.00	
52	25-Nov-16	TH	Data review	12-Oct-16	03:00	12-Oct-16	20:00	Elevated levels of up to 31 µg/m³ were measured on October 12 at 11:00 without a corresponding trend at the Oshawa or Courtice stations. The wind
								was blowing from the south-southeast - potential emission sources in this direction include Highway 401 or the CP railroad. Minute data was reviewed
								and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
53	25-Nov-16	TH	Data review	14-Oct-16	08:00	14-Oct-16	17:00	Elevated levels of up to 40 µg/m³ were measured on October 14 at 8:00 without a corresponding trend at the Oshawa or Courtice stations. The wind was
								blowing from the south - potential emission sources in this direction include Highway 401 or the CP railroad. Minute data was reviewed and
								measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
54	25-Nov-16	TH	Data review	20-Oct-16	04:00	20-Oct-16	04:00	An elevated level of 29 µg/m³ was measured on October 20 at 4:00 without a corresponding trend at Courtice or Oshawa station. Winds were generally
								blowing from the northeast - the elevated reading may have been due to the CP railroad or local roads. Minute data was reviewed and measurements
								were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
55	25-Nov-16	TH	Data review	28-Oct-16	12:00	28-Oct-16	18:00	Elevated levels of up to 56 µg/m³ were measured on October 28 at 15:00 without a corresponding trend at the Courtice or Oshawa stations. Winds were
								generally blowing from the southwest - the elevated readings occurred during the daytime and may have been due to Highway 418 construction
								activities, the CP railroad or Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
								Therefore, the data was deemed valid.
56	25-Nov-16	TH	Data review	29-Oct-16	06:00	29-Oct-16	16:00	Elevated levels of up to 78 µg/m³ were measured on October 29 at 13:00 without a corresponding trend at the Courtice or Oshawa stations. Winds were
								generally blowing from the west-southwest - the elevated readings occurred during the daytime and may have been due to Highway 418 construction
								activities, the CP railroad or Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
57	19-Dec-16	TH	Invalidate	12-Dec-16	14:00	12-Dec-16	15:00	Monthly calibration
58	19-Dec-16	TH	Invalidate	13-Dec-16	12:00	13-Dec-16	12:00	MOECC audit
59	19-Dec-16	TH	Invalidate	17-Dec-16	18:00	17-Dec-16	20:00	Evidence of power outage
60	22-Dec-16	TH	Data review	1-Nov-16	04:00	2-Nov-16	05:00	Elevated levels of up to 60.4 µg/m³ were measured on November 1 at 17:00 without a corresponding trend at the Oshawa or Courtice stations. Winds
								were generally blowing from the east - potential emission sources in this direction include local roads or the CP railroad. Minute data was reviewed and
					1			measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
61	22-Dec-16	TH	Data review	4-Nov-16	13:00	4-Nov-16	18:00	Elevated levels of up to 37.4 µg/m³ were measured on November 4 without a corresponding trend at the Courtice or Oshawa stations. Winds were
					1			generally blowing from the west-southwest - the elevated readings occurred during the daytime and may have been due to Highway 418 construction
					1			activities, the CP railroad or Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
							1	Therefore, the data was deemed valid.
62	22-Dec-16	TH	Data review	5-Nov-16	09:00	5-Nov-16	16:00	Elevated levels of up to 54.3 µg/m³ were measured on November 5 at 13:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
								were generally blowing from the west-southwest - the elevated readings occurred during the daytime and may have been due to Highway 418
					1			construction activities, the CP railroad or Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time
63	22-Dec-16	TH	Data socious	7 Nov. 16	09:00	7-Nov-16	18:00	period. Therefore, the data was deemed valid. Elevated levels of up to 67.4 up/m³ upon maximad on November 7 at 11:00 without a corresponding trend at the Courties or Ochawa stations. Winds
63	22-Dec-16	IH IH	Data review	7-Nov-16	09:00	/-NOV-16	18:00	Elevated levels of up to 67.4 µg/m ³ were measured on November 7 at 11:00 without a corresponding trend at the Courtice or Oshawa stations. Winds were generally blowing from the south-southwest - potential emission sources in this direction include the CP railroad or Highway 401. Minute data was
					1			reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
64	22-Dec-16	TH	Data review	8-Nov-16	09:00	9-Nov-16	01:00	Elevated levels of up to 78.7 µg/m³ were measured on November 8 at 15:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
04	22-000-10		Data leview	0.1404-10	03.00	2 1404-10	01.00	were generally blowing from the west-southwest - some elevated readings occurred during the daytime and may have been due to Highway 418
								were generally blowing in the construction activities, the CP railroad or Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time
					1		1	period. Therefore, the data was deemed valid.
L		1	-1	1	1	1		F

Project Name	Durham York Ener	gy Centre Amhient	Air Monitoring Program					
Contact	Greg Crooks /	gy centre Ambient	Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
Contact	Connie Lim / Tim		i none.	303 344 7777	2			8-8-1C
	Hung							
Station number:		200	Station Name:	Rundle Road Sta	ation			
Station address:	Rundle Road / Bas		Emitter Address:			sland Rd, Whitb	v. ON	
Pollutant or parameter:	PM _{2.5}	Instrument make		Thermo Sharp 5			Serial Number:	E-1569
	2.5			Ambient Real-ti		,		
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-1			1	Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Star		En	ding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)	, ,	(dd-mm-yy)	, ,	
65	22-Dec-16	TH	Data review	10-Nov-16	09:00	10-Nov-16	19:00	Elevated levels of up to 63.1 µg/m³ were measured on November 10 at 11:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
								were generally blowing from the west-southwest - the elevated readings occurred during the daytime and may have been due to Highway 418
								construction activities, the CP railroad or Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time
								period. Therefore, the data was deemed valid.
66	22-Dec-16	TH	Data review	12-Nov-16	09:00	12-Nov-16	23:00	Elevated levels of up to 41.3 µg/m³ were measured on November 12 at 14:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
								were blowing from the west-southwest - some elevated readings occurred during the daytime and may have been due to Highway 418 construction
								activities, the CP railroad or Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
								Therefore, the data was deemed valid.
67	22-Dec-16	TH	Data review	13-Nov-16	10:00	13-Nov-16	16:00	Elevated levels of up to 43.4 µg/m³ were measured on November 13 at 13:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
								were blowing from the west-southwest - the elevated readings occurred during the daytime and may have been due to Highway 418 construction
								activities, the CP railroad or Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time period.
								Therefore, the data was deemed valid.
68	22-Dec-16	TH	Data review	14-Nov-16	11:00	14-Nov-16	18:00	Elevated levels of up to 44.7 µg/m³ were measured on November 14 at 17:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
								terevated levels of up to 44.7 µg/m. Wer lineasured on toverniner 14 at 17.00 without a Corresponding trend at the Courtue of Ostraway stations. Williams were blowing from the west - the elevated readings occurred during the daytime and may have been due to Highway 418 construction activities or local
								were proving norm the west - the elevated readings occurred utiling the day time and may have been due to righway 4.15 constitution activities on local roads. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
								1
69	22-Dec-16	TH	Data review	15-Nov-16	11:00	15-Nov-16	11:00	Elevated levels of 53.4 µg/m³ were measured on November 15 at 11:00 without a corresponding trend at the Oshawa or Courtice stations. Winds were
								generally blowing from the east - potential emission sources in this direction include local roads or the CP railroad. Minute data was reviewed and
								measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
70	22-Dec-16	TH	Data review	16-Nov-16	09:00	16-Nov-16	13:00	Elevated levels of 71.8 µg/m³ were measured on November 16 at 12:00 without a corresponding trend at the Oshawa or Courtice stations. Winds were
								generally blowing from the northwest - potential emission sources in this direction include agricultural activities. Minute data was reviewed and
								measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
71	22-Dec-16	TH	Data review	18-Nov-16	10:00	18-Nov-16	19:00	Elevated levels of 44.8 µg/m³ were measured on November 18 at 14:00 without a corresponding trend at the Oshawa or Courtice stations. The winds
								were generally blowing from the east-southeast - potential emission sources in this direction include the St. Mary's Cement plant, the CP railroad or
								Highway 401. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed
72	22-Dec-16	TH	Data review	19-Nov-16	20:00	23-Nov-16	04:00	valid. Instances of repeating 0.17 µg/m³ measurements in this timeframe was noted. During these periods, low ambient PM2.5 levels were also measured at
/2	22-Det-16	III	Data review	19-NOV-10	20.00	25-NOV-10	04.00	the Courtice and Oshawa Stations. Some variation in measurements were also recorded and no instrument warnings or error messages occurred. These
								the countries and Soliewa Sciencias. Some validation in measurements were also become and no instrument wallings or entire in messages occurred. These periods are likely due to very low ambient PMA.5 concentrations being measured while the instrument nephalometer calibration had drifted slightly
								periods are incry due to very low animent PM2.3 concent atoms being measured while the institution in the phalometer cambration had differ signify negative.
73	22-Dec-16	TH	Data review	24-Nov-16	08:00	24-Nov-16	17:00	Itegative. Elevated levels of up to 37.5 µg/m³ were measured on November 24 at 13:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
/3	22-060-10	""	Data review	24-1100-10	08.00	24-1404-10	17.00	were generally blowing from the east-northeast - potential emission sources in this direction include the CP railroad or local roads. Minute data was
								we've generally nowing moving the cast mineral process and the state of the state o
74	3-Jan-17	TH	Data review	3-Dec-16	16:00	3-Dec-16	19:00	Elevated levels of up to 36.5 µg/m³ were measured on December 3 at 17:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
	3 3411 17		Data review	3 500 10	10.00	3 500 10	13.00	were blowing from the west - potential emission sources in this direction include local roads. Minute data was reviewed and measurements were
								reasonably consistent throughout this time period. Therefore, the data was deemed valid.
75	3-Jan-17	TH	Data review	5-Dec-16	02:00	5-Dec-16	15:00	
		***						Elevated levels of up to 53.4 µg/m³ were measured on December 5 at 8:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
								were blowing from the west - potential emission sources in this direction include local roads. Minute data was reviewed and measurements were
								reasonably consistent throughout this time period. Therefore, the data was deemed valid.
76	3-Jan-17	TH	Data review	10-Dec-16	04:00	10-Dec-16	06:00	Elevated levels of up to 30 µg/m³ were measured on December 10 at 5:00 without a corresponding trend at the Oshawa or Courtice stations. The wind
, , ,	3 30 17		Data review	10 500 10	000	10 500 10	00.00	was blowing from the north - potential emission sources in this direction include agricultural activities or local roads. Minute data was reviewed and
								measurements were reasonably consistent throughout this time period. The data was deemed valid.
77	3-Jan-17	TH	Data review	11-Dec-16	11:00	13-Dec-16	10:00	Elevated levels of up to 50.7 µg/m² were measured on December 13 at 10:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
								were blowing from the south and west - potential emission sources in this direction include local roads or the CP railroad. Minute data was reviewed and
				1				measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.
78	3-Jan-17	TH	Data review	16-Dec-16	08:00	16-Dec-16	18:00	
								Elevated levels of up to 136.4 µg/m³ were measured on December 16 at 17:00 without a corresponding trend at the Courtice or Oshawa stations. Winds
				1				were blowing from the west - potential emission sources in this direction include local roads. Minute data was reviewed and measurements were
								reasonably consistent throughout this time period. Therefore, the data was deemed valid.
79	3-Jan-17	TH	Data review	17-Dec-16	14:00	17-Dec-16	17:00	Elevated levels of 44 µg/m³ were measured on December 17 at 14:00 without a corresponding trend at the Oshawa or Courtice stations. Winds were
				1				generally blowing from the east - potential emission sources in this direction include local roads or the CP railroad. Minute data was reviewed and
								measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.

Project Name	Durham York Ene	rgy Centre Ambient	Air Monitoring Program	1										
Contact	Greg Crooks / Connie Lim / Tim Hung		Phone:	905-944-7777	E-mail:	greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com								
Station number:	45	5200	Station Name:	Rundle Road Sta	ition									
Station address:	Rundle Road / Ba	seline Road	Emitter Address:	The Region of Di	The Region of Durham, 605 Rossland Rd, Whitby, ON									
Pollutant or parameter:	PM _{2.5}	Instrument make	& model:	Thermo Sharp 50 Ambient Real-tir		ed Hybrid	Serial Number:	E-1569						
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16	5		·	Time Zone : EST						
Edit #	Edit date	Editor's Name	Edit Action	Start	ing	En	ding	Reason						
				Date (dd-mm-vv)	Hour (xx:xx)	Date (dd-mm-vv)	Hour (xx:xx)							
80	3-Jan-17	ТН	Data review	19-Dec-16	11:00	20-Dec-16	12:00	Elevated levels of up to 59.1 µg/m³ were measured on December 19 at 15:00 without a corresponding trend at the Courtice or Oshawa stations. Winds were blowing from the west - potential emission sources in this direction include local roads. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.						
81	3-Jan-17	TH	Data review	26-Dec-16	09:00	26-Dec-16	19:00	Elevated levels of 113.5 µg/m³ were measured on December 26 at 11:00 without a corresponding trend at the Oshawa or Courtice stations. Winds were generally blowing from the east - potential emission sources in this direction include local roads or the CP railroad. Minute data was reviewed and measurements were reasonably consistent throughout this time period. Therefore, the data was deemed valid.						
82	19-Jan-17	TZ	Data review	18-Oct-16	13:00	18-Oct-16	21:00	Instance of repeating 0.2µg/m ³ measurements. Data was reviewed and the measurements are changing but were rounded to 0.2µg/m ³						
				9-Dec-16	03:00	9-Dec-16	18:00	Instance of repeating 0.2 µg/m³ measurements. Data was reviewed and the measurements are changing but were rounded to 0.2 µg/m³						
				14-Dec-16	03:00	14-Dec-16	09:00	Instance of repeating 0.3 µg/m ³ measurements. Data was reviewed and the measurements are changing but were rounded to 0.3 µg/m ³						
				26-Dec-16	00:00	26-Dec-16	05:00	Instance of repeating 0.6µg/m³ measurements. Data was reviewed and the measurements are changing but were rounded to 0.6µg/m³						
83	19-Jan-17	TZ	Data review	9-Nov-16	06:00	9-Nov-16	20:00	Instances of repeating 0.17 µg/m³ measurements in this timeframe was noted. During these periods, low ambient PM2.5 levels were also measured at the Courtice and Oshawa Stations. This period is likely due to very low ambient PM2.5 concentrations being measured while the instrument nephalometer calibration had drifted slightly negative.						
	1													

EDIT LOG TABLE												
Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program									
Contact	Greg Crooks /		Phone:	905-944-7777 E-mail: greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com								
	Connie Lim / Tim											
	Hung											
Station number:	45	200	Station Name:	Rundle Road Sta	Rundle Road Station							
Station address:	Rundle Road / Bas	eline Road	Emitter Address:	The Region of D	urham, 605 Ros	sland Rd, Whitb	y, ON					
Pollutant or parameter:	Temperature	Instrument make	& model:	Campbell Scient	ific Model HMP	P60	Serial Number:					
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-1	6			Time Zone : EST				
Edit #	Edit date	Editor's Name	Edit Action	Start	ting	En	ding	Reason				
				Date	Hour (xx:xx)	Date	Hour (xx:xx)					
				(dd-mm-yy)		(dd-mm-yy)						
4	24-Oct	TH	Invalidate	18-Oct-16	08:00	18-Oct-16	08:00	Annual calibration.				
5	19-Dec-16	TH	Invalidate	17-Dec-16	18:00	17-Dec-16	20:00	Evidence of power outage				

EDIT LOG TABLE

EDIT LOG TABLE								
Project Name	Durham York Ene	rgy Centre Ambien	t Air Monitoring Program					
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
	Connie Lim / Tim							
	Hung							
Station number:	45	200	Station Name:	Rundle Road Sta	tion			
Station address:	Rundle Road / Ba	seline Road	Emitter Address:	The Region of D	urham, 605 Ros	sland Rd, Whith	y, ON	
Pollutant or parameter:	Rainfall	Instrument make	& model:	Texas Electronic	TE525M		Serial Number:	
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-16	i			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Start		En	ding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
4	24-Oct	TH	Invalidate	18-Oct-16	08:00	18-Oct-16	08:00	Annual calibration
5	19-Dec-16	TH	Invalidate	17-Dec-16	18:00	17-Dec-16	20:00	Evidence of power outage

EDIT LOG TABLE								
Project Name	Durham York Ener	gy Centre Ambient	Air Monitoring Program					
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
	Connie Lim / Tim							
	Hung							
Station number:	45	200	Station Name:	Rundle Road Sta	ation			
Station address:	Rundle Road / Bas	eline Road	Emitter Address:	The Region of D	urham, 605 Ros	sland Rd, Whitb	y, ON	
Pollutant or parameter:	Relative Humidity	Instrument make	& model:	Campbell Scient	ific Model HMP	60	Serial Number:	
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-1	6			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Star	ting	En	ding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
4	24-Oct	TH	Invalidate	18-Oct-16	08:00	18-Oct-16	08:00	Annual calibration
5	19-Dec-16	TH	Invalidate	17-Dec-16	18:00	17-Dec-16	20:00	Evidence of power outage

EDIT LOG TABLE

EDIT LOG TABLE								
Project Name	Durham York Ener	rgy Centre Ambient	Air Monitoring Program					
Contact	Greg Crooks /		Phone:	905-944-7777	E-mail:			greg.crooks@stantec.com, connie.lim@stantec.com, tim.hung@stantec.com
	Connie Lim / Tim							
	Hung							
Station number:	45	5200	Station Name:	Rundle Road Sta	ation			
Station address:	Rundle Road / Bas	seline Road	Emitter Address:	The Region of D	urham, 605 Ros	sland Rd, Whitb	y, ON	
Pollutant or parameter:	Wind	Instrument make	& model:	Met One Instru	ments Inc. Mod	el 034B	Serial Number:	
	Speed/Wind							
	Direction							
Data edit period	Start date:	1-Oct-16	End date:	31-Dec-1	6			Time Zone : EST
Edit #	Edit date	Editor's Name	Edit Action	Star	ting	En	ding	Reason
				Date	Hour (xx:xx)	Date	Hour (xx:xx)	
				(dd-mm-yy)		(dd-mm-yy)		
5	22-Nov-16	TH	Invalidate	11-Nov-16	08:00	11-Nov-16	08:00	Wind sensor removed for maintenance. Spare installed and calibrated.
6	1-Dec-16	TH	Invalidate	25-Nov-16	14:00	25-Nov-16	14:00	Spare removed. Original resinstalled and calibrated
7	19-Dec-16	TH	Invalidate	17-Dec-16	18:00	17-Dec-16	20:00	Evidence of power outage

Examples of Acceptable Edit Actions: Add offset of Delete hours

Zero Correction

Slope Correction

Manual data entry for missing, but collected data

Invalidating span & zero check data

Invalidating data due to equipment malfunctions and power failures.

Invalidating data when instrumentation off-line

Marking data as out-of-range

QUARTERLY AMBIENT AIR QUALITY MONITORING REPORT FOR THE DURHAM YORK ENERGY CENTRE – OCTOBER TO DECEMBER 2016

Appendix G METALS Data Summary February 8, 2017

Appendix G METALS DATA SUMMARY

Project No.: 160950528 G.1

Metals and Total	Courtice WPCP Station																														
Particulates																															
Location		Cou	urtice	Col	urtice	Cou	urtice	Cou	urtice	Cou	urtice	Cou	rtice	Cou	rtice ³	Co	urtice	Cou	rtice	Cou	rtice	Со	urtice								
Date	dd/mm/yyyy	03/10	0/2016	09/1	0/2016	15/1	0/2016	21/1	0/2016	27/1	0/2016	02/11	1/2016	08/11	1/2016	14/11	1/2016	20/11	1/2016	26/11	/2016	02/12		08/1	2/2016	14/12	/2016	20/12	/2016	26/1	2/2016
Start Time	hh:mm	0	:00	0	0:00	0	:00	0	:00	0	:00	0	:00	0:	:00	0:	:00	0:	:00	0:	00	0:	:00	C	0:00	0:	00	0:	00	(:00
Sample Duration	Hours	23	3.98	23	3.16	2	3.6	24	4.21	23	3.14	23	3.32	23	3.76	23	3.25	23	3.3	23	.54	23	3.09	2	3.58	23	.89	22	.68	2	3.27
Technician			TH	-	TH		TH		TH		TΗ	1	TH	K	M	T	TH	T	TH	1	Н	1	TH		TH	T	Н	Т	Н		TH
Filter Number		160	90711	160	90715	160	90685	160	90689	160	91949	1609	91954	1609	92079	1609	92082	1609	92086	1609	2090	1611	11064	161	11068	1611	2826	1611	2980	161	20595
Analytical Report #		B6L	4662	B6N	A0580	B6N	A4167	B6N	V2112	B6N	15688	B6C	01407	B6C	14939	B6P	2339	B6P	4187	B6P	9738	B6C	25548	B6F	R1167	B6R!	5524	B6R	8490	B65	50281
	. 3,																														
Total Volumetric Flow	Am³/sample		9.21		78.53		35.19		78.68	144	17.74		99.45		16.33		77.51		77.57	148	5.31		4.01		66.78		8.34		2.12		52.10
Analytical Results	Units	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL										
Particulate	mg	24.7	5	12.4	5	24.1	5	15.1	5	24.2	5	45.7	5	46.7	5	50.7	5	20	5	21.1	5	36	5	40.1	5	22.3	5	27.4	5	16.8	5
Total Mercury (Hg)	μg	<0.02	0.02	< 0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02
Aluminum (AI)	μg	130	50	<50	50	89	50	<50	50	139	50	256	50	200	50	216	50	117	50	84	50	128	50	115	50	65	50	68	50	68	50
Antimony (Sb)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Arsenic (As)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Barium (Ba)	μg	10.6	1.0	11.7	1.0	7.5	1.0	6.8	1.0	4.7	1.0	32.7	1.0	51.4	1.0	17.9	1.0	6.9	1.0	13.9	1.0	8.7	1.0	11.1	1.0	8.2	1.0	6.6	1.0	6.5	1.0
Beryllium (Be)	μg	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0
Bismuth (Bi)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Boron (B)	hā	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Cadmium (Cd)	hā	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Chromium (Cr)	hā	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	11.2	5.0	<5.0	5.0	6.5	5.0	5.9	5.0	<5.0	5.0	<5.0	5.0	5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Cobalt (Co)	hā	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Copper (Cu)	μg	69.0	5.0	35.4	5.0	26.9	5.0	15.4	5.0	25.1	5.0	50.5	5.0	80.5	5.0	36.4	5.0	25.1	5.0	56.0	5.0	51.5	5.0	23.3	5.0	15.3	5.0	9.7	5.0	17.2	5.0
Iron (Fe)	μg	490	50	257	50	321	50	166	50	324	50	909	50	738	50	858	50	284	50	400	50	349	50	390	50	190	50	234	50	198	50
Lead (Pb)	μg	< 3.0	3.0	<3.0	3.0	3.6	3.0	<3.0	3.0	<3.0	3.0	6.3	3.0	9.3	3.0	7.6	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	3.5	3.0	3.2	3.0	3.4	3.0	<3.0	3.0
Magnesium (Mg)	μg	171	50	75	50	143	50	80	50	154	50	287	50	336	50	569	50	111	50	139	50	198	50	317	50	118	50	126	50	100	50
Manganese (Mn)	μg	12.7	1.0	5.8	1.0	8.3	1.0	5.6	1.0	10.7	1.0	25.6	1.0	24.6	1.0	25.5	1.0	8.3	1.0	10.2	1.0	18.5	1.0	15.7	1.0	9.8	1.0	8.2	1.0	5.9	1.0
Molybdenum (Mo)	μg	< 3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Nickel (Ni)	μg	< 3.0	3.0	<3.0	3.0	3.1	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	3.3	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Phosphorus (P)	μg	87	25	25	25	25	25	48	25	28	25	55	25	42	25	39	25	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25
Selenium (Se)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Silver (Ag)	μg	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Strontium (Sr)	μg	5.7	1.0	2.2	1.0	5.0	1.0	1.9	1.0	6.3	1.0	6.3	1.0	8.0	1.0	9.0	1.0	2.3	1.0	5.3	1.0	5.2	1.0	5.4	1.0	2.4	1.0	2.5	1.0	3.1	1.0
Thallium (TI)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Tin (Sn)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Titanium (Ti)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	14	10	13	10	11	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Vanadium (V)	μg	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Zinc (Zn)	μq	23.6	5.0	14.1	5.0	25.3	5.0	12.4	5.0	68.6	5.0	72.3	5.0	60.7	5.0	71.8	5.0	47.2	5.0	34.9	5.0	130	5.0	140	5.0	83.1	5.0	65.8	5.0	20.1	5.0
Zirconium (Zr)	μg	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Total Uranium (U)	na	< 0.45	0.45	<0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.451	0.45	< 0.452	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45
roidi ordinolli (0)	μg	-\U.4J	0.40	NJ.43	0.40	Q.43	0.40	NU.40	0.40	NU.43	0.43	NO.43	0.40	10.40	0.43	10.70	0.43	NU.40	0.40	NO.40	0.40	NO.40	0.40	NU.43	0.40	NO.40	0.43	QU.40	0.40	NU.40	0.43

considered valid.		Quarter 4		Courtice	Courtice3	Courtice	Courtice	Courtice	Courtice									
		Quality 4		41	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Calculated Concentrations	Units	Maximum	Minimum									ï						
				03/10/2016	09/10/2016	15/10/2016	21/10/2016	27/10/2016	02/11/2016	08/11/2016	14/11/2016	20/11/2016	26/11/2016	02/12/2016	08/12/2016	14/12/2016	20/12/2016	26/12/2016
Particulate	μg/m³	34.31	8.39	15.74	8.39	15.70	9.56	16.72	30.48	30.80	34.31	13.54	14.21	24.59	27.34	15.29	19.40	11.57
Total Mercury (Hg)	μg/m³	1.36E-05	6.33E-06	6.37E-06	6.76E-06	6.51E-06	6.33E-06	6.91E-06	6.67E-06	6.59E-06	1.35E-05	6.77E-06	6.73E-06	6.83E-06	1.36E-05	6.86E-06	7.08E-06	6.89E-06
Aluminum (Al)	μg/m³	1.71E-01	1.58E-02	8.28E-02	1.69E-02	5.80E-02	1.58E-02	9.60E-02	1.71E-01	1.32E-01	1.46E-01	7.92E-02	5.66E-02	8.74E-02	7.84E-02	4.46E-02	4.82E-02	4.68E-02
Antimony (Sb)	µg/m³	3.54E-03	3.17E-03	3.19E-03	3.38E-03	3.26E-03	3.17E-03	3.45E-03	3.33E-03	3.30E-03	3.38E-03	3.38E-03	3.37E-03	3.42E-03	3.41E-03	3.43E-03	3.54E-03	3.44E-03
Arsenic (As)	μg/m³	2.12E-03	1.90E-03	1.91E-03	2.03E-03	1.95E-03	1.90E-03	2.07E-03	2.00E-03	1.98E-03	2.03E-03	2.03E-03	2.02E-03	2.05E-03	2.05E-03	2.06E-03	2.12E-03	2.07E-03
Barium (Ba)	$\mu g/m^3$	3.39E-02	3.25E-03	6.75E-03	7.91E-03	4.89E-03	4.31E-03	3.25E-03	2.18E-02	3.39E-02	1.21E-02	4.67E-03	9.36E-03	5.94E-03	7.57E-03	5.62E-03	4.67E-03	4.48E-03
Beryllium (Be)	$\mu g/m^3$	3.54E-04	3.17E-04	3.19E-04	3.38E-04	3.26E-04	3.17E-04	3.45E-04	3.33E-04	3.30E-04	3.38E-04	3.38E-04	3.37E-04	3.42E-04	3.41E-04	3.43E-04	3.54E-04	3.44E-04
Bismuth (Bi)	$\mu g/m^3$	2.12E-03	1.90E-03	1.91E-03	2.03E-03	1.95E-03	1.90E-03	2.07E-03	2.00E-03	1.98E-03	2.03E-03	2.03E-03	2.02E-03	2.05E-03	2.05E-03	2.06E-03	2.12E-03	2.07E-03
Boron (B)	μg/m³	2.12E-03	1.90E-03	1.91E-03	2.03E-03	1.95E-03	1.90E-03	2.07E-03	2.00E-03	1.98E-03	2.03E-03	2.03E-03	2.02E-03	2.05E-03	2.05E-03	2.06E-03	2.12E-03	2.07E-03
Cadmium (Cd)	μg/m³	7.08E-04	6.33E-04	6.37E-04	6.76E-04	6.51E-04	6.33E-04	6.91E-04	6.67E-04	6.59E-04	6.77E-04	6.77E-04	6.73E-04	6.83E-04	6.82E-04	6.86E-04	7.08E-04	6.89E-04
Chromium (Cr)	μg/m³	7.74E-03	1.58E-03	1.59E-03	1.69E-03	1.63E-03	1.58E-03	7.74E-03	1.67E-03	4.29E-03	3.99E-03	1.69E-03	1.68E-03	3.42E-03	1.70E-03	1.71E-03	1.77E-03	1.72E-03
Cobalt (Co)	μg/m³	7.08E-04	6.33E-04	6.37E-04	6.76E-04	6.51E-04	6.33E-04	6.91E-04	6.67E-04	6.59E-04	6.77E-04	6.77E-04	6.73E-04	6.83E-04	6.82E-04	6.86E-04	7.08E-04	6.89E-04
Copper (Cu)	μg/m³	5.31E-02	6.87E-03	4.40E-02	2.39E-02	1.75E-02	9.76E-03	1.73E-02	3.37E-02	5.31E-02	2.46E-02	1.70E-02	3.77E-02	3.52E-02	1.59E-02	1.05E-02	6.87E-03	1.18E-02
Iron (Fe)	µg/m³	6.06E-01	1.05E-01	3.12E-01	1.74E-01	2.09E-01	1.05E-01	2.24E-01	6.06E-01	4.87E-01	5.81E-01	1.92E-01	2.69E-01	2.38E-01	2.66E-01	1.30E-01	1.66E-01	1.36E-01
Lead (Pb)	μg/m³	6.13E-03	9.50E-04	9.56E-04	1.01E-03	2.34E-03	9.50E-04	1.04E-03	4.20E-03	6.13E-03	5.14E-03	1.02E-03	1.01E-03	1.02E-03	2.39E-03	2.19E-03	2.41E-03	1.03E-03
Magnesium (Mg)	$\mu g/m^3$	3.85E-01	5.07E-02	1.09E-01	5.07E-02	9.31E-02	5.07E-02	1.06E-01	1.91E-01	2.22E-01	3.85E-01	7.51E-02	9.36E-02	1.35E-01	2.16E-01	8.09E-02	8.92E-02	6.89E-02
Manganese (Mn)	µg/m³	1.73E-02	3.55E-03	8.09E-03	3.92E-03	5.41E-03	3.55E-03	7.39E-03	1.71E-02	1.62E-02	1.73E-02	5.62E-03	6.87E-03	1.26E-02	1.07E-02	6.72E-03	5.81E-03	4.06E-03
Molybdenum (Mo)	µg/m³	1.06E-03	9.50E-04	9.56E-04	1.01E-03	9.77E-04	9.50E-04	1.04E-03	1.00E-03	9.89E-04	1.02E-03	1.02E-03	1.01E-03	1.02E-03	1.02E-03	1.03E-03	1.06E-03	1.03E-03
Nickel (Ni)	μg/m³	2.23E-03	9.50E-04	9.56E-04	1.01E-03	2.02E-03	9.50E-04	1.04E-03	1.00E-03	9.89E-04	1.02E-03	2.23E-03	1.01E-03	1.02E-03	1.02E-03	1.03E-03	1.06E-03	1.03E-03
Phosphorus (P)	μg/m³	5.54E-02	8.42E-03	5.54E-02	1.69E-02	1.63E-02	3.04E-02	1.93E-02	3.67E-02	2.77E-02	2.64E-02	8.46E-03	8.42E-03	8.54E-03	8.52E-03	8.57E-03	8.85E-03	8.61E-03
Selenium (Se)	μg/m³	3.54E-03	3.17E-03	3.19E-03	3.38E-03	3.26E-03	3.17E-03	3.45E-03	3.33E-03	3.30E-03	3.38E-03	3.38E-03	3.37E-03	3.42E-03	3.41E-03	3.43E-03	3.54E-03	3.44E-03
Silver (Ag)	$\mu g/m^3$	1.77E-03	1.58E-03	1.59E-03	1.69E-03	1.63E-03	1.58E-03	1.73E-03	1.67E-03	1.65E-03	1.69E-03	1.69E-03	1.68E-03	1.71E-03	1.70E-03	1.71E-03	1.77E-03	1.72E-03
Strontium (Sr)	μg/m³	6.09E-03	1.20E-03	3.63E-03	1.49E-03	3.26E-03	1.20E-03	4.35E-03	4.20E-03	5.28E-03	6.09E-03	1.56E-03	3.57E-03	3.55E-03	3.68E-03	1.65E-03	1.77E-03	2.13E-03
Thallium (TI)	μg/m³	3.54E-03	3.17E-03	3.19E-03	3.38E-03	3.26E-03	3.17E-03	3.45E-03	3.33E-03	3.30E-03	3.38E-03	3.38E-03	3.37E-03	3.42E-03	3.41E-03	3.43E-03	3.54E-03	3.44E-03
Tin (Sn)	μg/m³	3.54E-03	3.17E-03	3.19E-03	3.38E-03	3.26E-03	3.17E-03	3.45E-03	3.33E-03	3.30E-03	3.38E-03	3.38E-03	3.37E-03	3.42E-03	3.41E-03	3.43E-03	3.54E-03	3.44E-03
Titanium (Ti)	μg/m³	9.34E-03	3.17E-03	3.19E-03	3.38E-03	3.26E-03	3.17E-03	3.45E-03	9.34E-03	8.57E-03	7.44E-03	3.38E-03	3.37E-03	3.42E-03	3.41E-03	3.43E-03	3.54E-03	3.44E-03
Vanadium (V)	μg/m³	1.77E-03	1.58E-03	1.59E-03	1.69E-03	1.63E-03	1.58E-03	1.73E-03	1.67E-03	1.65E-03	1.69E-03	1.69E-03	1.68E-03	1.71E-03	1.70E-03	1.71E-03	1.77E-03	1.72E-03
Zinc (Zn)	μg/m³	9.54E-02	7.85E-03	1.50E-02	9.54E-03	1.65E-02	7.85E-03	4.74E-02	4.82E-02	4.00E-02	4.86E-02	3.19E-02	2.35E-02	8.88E-02	9.54E-02	5.70E-02	4.66E-02	1.38E-02
Zirconium (Zr)	μg/m³	1.77E-03	1.58E-03	1.59E-03	1.69E-03	1.63E-03	1.58E-03	1.73E-03	1.67E-03	1.65E-03	1.69E-03	1.69E-03	1.68E-03	1.71E-03	1.70E-03	1.71E-03	1.77E-03	1.72E-03
Total Uranium (U)	µg/m³	1.59E-04	1.43E-04	1.43E-04	1.52E-04	1.47E-04	1.43E-04	1.55E-04	1.50E-04	1.48E-04	1.52E-04	1.52E-04	1.51E-04	1.54E-04	1.53E-04	1.54E-04	1.59E-04	1.55E-04

^{1.} Total Uranium on a Hi-Vol Filter : CCV recovery for U range from 92.3% to 88.5%, data for U may be slightly biased low

Total Uranium on a Hi-Vol Filter: CCV recovery for U range from 91.3% to 89.8%, data for U may be slightly biased low
 Filter was wet during retreival. The sample results were comparable to other stations, therefore the results were

Metals and Total	Rundle Station																														<i></i>
Particulates	Ronale Station																														
Location		Ru	ındle	Ru	ındle	Rui	ndle	Rui	ndle	Ru	ndle	Ru	ndle	Rui	ndle	Ru	ndle	Ru	ndle	Rur	ndle	Pur	ndle ³	Ru	ndle	Rui	ndle	Pur	ndle ⁴	Ru	undle
Date	dd/mm/yyyy		0/2016		0/2016		0/2016	21/10			0/2016		1/2016		1/2016		1/2016		1/2016	26/11		02/12			2/2016		2/2016		2/2016		12/2016
Start Time	hh:mm		0:00		0:00	0:		-	:00		:00		:00		0:00		:00		:00	0:			:00		:00		00		:00		0:00
Sample Duration	hours		3.46		3.65		3.73		3.14		4.16		4.05		3.58		3.17		3.57	23			1.29		.03		.27		3.03		3.36
Technician			TH		TH		ſΗ		ſΗ		TH		TH		KM		TH		TH		TH.		TH.		TH		H		ſΗ		TH
Filter Number		160	90712	1609	90716		90686		90690	160	91951		91955		92081		92083		92087		2091		11065		11069		12827		12981		120596
Analytical Report #			L4662		√0580		14167		12112		V5688		01407		04939		2339		4187		9738		5548		1167		5524		8490		S0281
Total Volumetric Flow	Am ³ /sample	16	31.18	153	30.77	157	2.28	151	1.55	161	15.05	15	54.75	161	12.89	144	52.95	147	76.19	1.16	8.06		9.52	140	3.72	150	19.27	140	2.17		50.88
Analytical Results	Units	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL
Particulate		26.1	5	16.6	5	26.5	5	17.8	5 5	12.9	5	58.9	KDL	71.3	5	142	5	33.3	5	23.3	5	41.1	5 .	61.8	5	76.6	5	42.2	5 .	20.3	5
Total Mercury (Hg)	mg µg	<0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02	0.02	0.02	0.02	0.02	<0.02	0.02	< 0.02	0.02	<0.02	0.02	0.02	0.02	0.03	0.02	0.02	0.02	<0.02	0.02
Aluminum (Al)	μg	153	50	<50	50	145	50	61	50	85	50	291	50	502	50	1150	50	283	50	105	50	188	50	216	50	323	50	97	50	97	50
Antimony (Sb)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Arsenic (As)	μg	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Barium (Ba)	hd	13.2	1.0	9.3	1.0	14.7	1.0	4.6	1.0	5.3	1.0	26.7	1.0	24.9	1.0	33.7	1.0	7.7	1.0	11.8	1.0	10.8	1.0	13.1	1.0	15.2	1.0	13.3	1.0	6.6	1.0
Beryllium (Be)	μg	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<10	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0
Bismuth (Bi)	μď	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Boron (B)	hd	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Cadmium (Cd)	hd	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Chromium (Cr)	hd	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	6.4	5.0	7.9	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	7.1	5.0	5.3	5.0	<5.0	5.0
Cobalt (Co)	na	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Copper (Cu)	μq	178	5.0	124	5.0	105	5.0	46.4	5.0	39.4	5.0	88.0	5.0	128	5.0	60.7	5.0	47.4	5.0	48.3	5.0	61.1	5.0	32.0	5.0	74.2	5.0	33.7	5.0	30.3	5.0
Iron (Fe)	μg	435	50	173	50	879	50	136	50	216	50	992	50	1310	50	2680	50	526	50	308	50	448	50	691	50	945	50	373	50	215	50
Lead (Pb)	μq	<3.0	3.0	<3.0	3.0	3.3	3.0	<3.0	3.0	<3.0	3.0	7.1	3.0	9.5	3.0	10.6	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	3.2	3.0	5.6	3.0	3.6	3.0	<3.0	3.0
Magnesium (Mg)	μg	166	50	87	50	168	50	80	50	99	50	413	50	596	50	1490	50	188	50	138	50	270	50	547	50	589	50	174	50	125	50
Manganese (Mn)	μg	9.5	1.0	5.4	1.0	12.6	1.0	4.9	1.0	7.0	1.0	28.8	1.0	35.2	1.0	71.9	1.0	14.9	1.0	8.9	1.0	15.3	1.0	28.0	1.0	46.5	1.0	12.7	1.0	5.5	1.0
Molybdenum (Mo)	μq	6.8	3.0	6.3	3.0	6.2	3.0	3.1	3.0	<3.0	3.0	6.2	3.0	6.1	3.0	4.5	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Nickel (Ni)	μg	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	3.6	3.0	4.0	3.0	3.8	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Phosphorus (P)	μg	77	25	35	25	37	25	59	25	26	25	62	25	59	25	104	25	40	25	<25	25	44	25	32	25	37	25	<25	25	<25	25
Selenium (Se)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Silver (Ag)	μg	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Strontium (Sr)	μg	5.1	1.0	3.0	1.0	4.9	1.0	1.4	1.0	3.0	1.0	10.7	1.0	12.9	1.0	30.9	1.0	4.2	1.0	5.0	1.0	9.4	1.0	10.3	1.0	16.9	1.0	4.3	1.0	4.2	1.0
Thallium (TI)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Tin (Sn)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Titanium (Ti)	μg	<10	10	<10	10	10	10	<10	10	<10	10	16	10	19	10	45	10	15	10	<10	10	11	10	15	10	14	10	<10	10	<10	10
Vanadium (V)	μg	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Zinc (Zn)	μg	22.2	5.0	11.3	5.0	22.6	5.0	9.1	5.0	17.8	5.0	67.8	5.0	59.6	5.0	97.5	5.0	29.2	5.0	33.2	5.0	54.5	5.0	62.6	5.0	81.2	5.0	51.7	5.0	19.8	5.0
Zirconium (Zr)	μg	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	< 5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Total Uranium (U)	μg	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45 ²	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45

Notes:

1. Total Uranium on a Hi-Vol Filter: CCV recovery for U range from 92.3% to 88.5%, data for U may be slightly biased low

2. Total Uranium on a Hi-Vol Fliter : CCV recovery for U range from 91.3% to 89.8%, data for U may be slightly biased low

Filter was wet during retreival. The sample results were comparable to other stations, therefore the results were considered valid.
 A power outage on 17-Dec-16 caused this sample to run ~3 hours

ater than scheduled.		Quarter 4		Rundle	Rundle3	Rundle	Rundle	Rundle4	Rundle									
				41	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Calculated Concentrations	Units	Maximum	Minimum															
				03/10/2016	09/10/2016	15/10/2016	21/10/2016	27/10/2016	02/11/2016	08/11/2016	14/11/2016	20/11/2016	26/11/2016	02/12/2016	08/12/2016	14/12/2016	20/12/2016	26/12/2016
articulate	μg/m³	97.06	8.51	17.05	10.84	16.85	11.78	8.51	37.88	47.13	97.06	22.56	15.87	27.97	41.37	50.75	30.10	13.99
tal Mercury (Hg)	µg/m³	1.99E-05	6.36E-06	6.53E-06	6.53E-06	6.36E-06	6.62E-06	6.60E-06	6.43E-06	1.32E-05	1.37E-05	6.77E-06	6.81E-06	6.80E-06	1.34E-05	1.99E-05	1.43E-05	6.89E-06
luminum (AI)	µg/m³	7.86E-01	1.63E-02	9.99E-02	1.63E-02	9.22E-02	4.04E-02	5.61E-02	1.87E-01	3.32E-01	7.86E-01	1.92E-01	7.15E-02	1.28E-01	1.45E-01	2.14E-01	6.92E-02	6.69E-02
ntimony (Sb)	µg/m³	3.57E-03	3.18E-03	3.27E-03	3.27E-03	3.18E-03	3.31E-03	3.30E-03	3.22E-03	3.30E-03	3.42E-03	3.39E-03	3.41E-03	3.40E-03	3.35E-03	3.31E-03	3.57E-03	3.45E-03
senic (As)	μg/m³	2.14E-03	1.91E-03	1.96E-03	1.96E-03	1.91E-03	1.98E-03	1.98E-03	1.93E-03	1.98E-03	2.05E-03	2.03E-03	2.04E-03	2.04E-03	2.01E-03	1.99E-03	2.14E-03	2.07E-03
arium (Ba)	μg/m³	2.30E-02	3.04E-03	8.62E-03	6.08E-03	9.35E-03	3.04E-03	3.50E-03	1.72E-02	1.65E-02	2.30E-02	5.22E-03	8.04E-03	7.35E-03	8.77E-03	1.01E-02	9.49E-03	4.55E-03
eryllium (Be)	µg/m³	3.57E-04	3.18E-04	3.27E-04	3.27E-04	3.18E-04	3.31E-04	3.30E-04	3.22E-04	3.30E-04	3.42E-04	3.39E-04	3.41E-04	3.40E-04	3.35E-04	3.31E-04	3.57E-04	3.45E-04
smuth (Bi)	μg/m³	2.14E-03	1.91E-03	1.96E-03	1.96E-03	1.91E-03	1.98E-03	1.98E-03	1.93E-03	1.98E-03	2.05E-03	2.03E-03	2.04E-03	2.04E-03	2.01E-03	1.99E-03	2.14E-03	2.07E-03
oron (B)	μg/m³	2.14E-03	1.91E-03	1.96E-03	1.96E-03	1.91E-03	1.98E-03	1.98E-03	1.93E-03	1.98E-03	2.05E-03	2.03E-03	2.04E-03	2.04E-03	2.01E-03	1.99E-03	2.14E-03	2.07E-03
admium (Cd)	µg/m³	7.13E-04	6.36E-04	6.53E-04	6.53E-04	6.36E-04	6.62E-04	6.60E-04	6.43E-04	6.61E-04	6.84E-04	6.77E-04	6.81E-04	6.80E-04	6.69E-04	6.63E-04	7.13E-04	6.89E-04
hromium (Cr)	µg/m³	5.40E-03	1.59E-03	1.63E-03	1.63E-03	1.59E-03	1.65E-03	1.65E-03	1.61E-03	4.23E-03	5.40E-03	1.69E-03	1.70E-03	1.70E-03	1.67E-03	4.70E-03	3.78E-03	1.72E-03
obalt (Co)	µg/m³	7.13E-04	6.36E-04	6.53E-04	6.53E-04	6.36E-04	6.62E-04	6.60E-04	6.43E-04	6.61E-04	6.84E-04	6.77E-04	6.81E-04	6.80E-04	6.69E-04	6.63E-04	7.13E-04	6.89E-04
opper (Cu)	µg/m³	1.16E-01	2.09E-02	1.16E-01	8.10E-02	6.68E-02	3.07E-02	2.60E-02	5.66E-02	8.46E-02	4.15E-02	3.21E-02	3.29E-02	4.16E-02	2.14E-02	4.92E-02	2.40E-02	2.09E-02
on (Fe)	µg/m³	1.83E+00	9.00E-02	2.84E-01	1.13E-01	5.59E-01	9.00E-02	1.43E-01	6.38E-01	8.66E-01	1.83E+00	3.56E-01	2.10E-01	3.05E-01	4.63E-01	6.26E-01	2.66E-01	1.48E-01
ead (Pb)	μg/m³	7.25E-03	9.80E-04	9.80E-04	9.80E-04	2.10E-03	9.92E-04	9.90E-04	4.57E-03	6.28E-03	7.25E-03	1.02E-03	1.02E-03	1.02E-03	2.14E-03	3.71E-03	2.57E-03	1.03E-03
agnesium (Mg)	μg/m³	1.02E+00	5.29E-02	1.08E-01	5.68E-02	1.07E-01	5.29E-02	6.53E-02	2.66E-01	3.94E-01	1.02E+00	1.27E-01	9.40E-02	1.84E-01	3.66E-01	3.90E-01	1.24E-01	8.62E-02
anganese (Mn)	µg/m³	4.91E-02	3.24E-03	6.20E-03	3.53E-03	8.01E-03	3.24E-03	4.62E-03	1.85E-02	2.33E-02	4.91E-02	1.01E-02	6.06E-03	1.04E-02	1.87E-02	3.08E-02	9.06E-03	3.79E-03
olybdenum (Mo)	μg/m³	4.44E-03	9.90E-04	4.44E-03	4.12E-03	3.94E-03	2.05E-03	9.90E-04	3.99E-03	4.03E-03	3.08E-03	1.02E-03	1.02E-03	1.02E-03	1.00E-03	9.94E-04	1.07E-03	1.03E-03
ckel (Ni)	μg/m³	2.73E-03	9.54E-04	9.80E-04	9.80E-04	9.54E-04	9.92E-04	9.90E-04	9.65E-04	2.38E-03	2.73E-03	2.57E-03	1.02E-03	1.02E-03	1.00E-03	9.94E-04	1.07E-03	1.03E-03
nosphorus (P)	µg/m³	7.11E-02	8.51E-03	5.03E-02	2.29E-02	2.35E-02	3.90E-02	1.72E-02	3.99E-02	3.90E-02	7.11E-02	2.71E-02	8.51E-03	2.99E-02	2.14E-02	2.45E-02	8.91E-03	8.62E-03
elenium (Se)	μg/m³	3.57E-03	3.18E-03	3.27E-03	3.27E-03	3.18E-03	3.31E-03	3.30E-03	3.22E-03	3.30E-03	3.42E-03	3.39E-03	3.41E-03	3.40E-03	3.35E-03	3.31E-03	3.57E-03	3.45E-03
ver (Ag)	μg/m³	1.78E-03	1.59E-03	1.63E-03	1.63E-03	1.59E-03	1.65E-03	1.65E-03	1.61E-03	1.65E-03	1.71E-03	1.69E-03	1.70E-03	1.70E-03	1.67E-03	1.66E-03	1.78E-03	1.72E-03
ontium (Sr)	µg/m³	2.11E-02	9.26E-04	3.33E-03	1.96E-03	3.12E-03	9.26E-04	1.98E-03	6.88E-03	8.53E-03	2.11E-02	2.85E-03	3.41E-03	6.40E-03	6.90E-03	1.12E-02	3.07E-03	2.89E-03
allium (TI)	µg/m³	3.57E-03	3.18E-03	3.27E-03	3.27E-03	3.18E-03	3.31E-03	3.30E-03	3.22E-03	3.30E-03	3.42E-03	3.39E-03	3.41E-03	3.40E-03	3.35E-03	3.31E-03	3.57E-03	3.45E-03
ı (Sn)	µg/m³	3.57E-03	3.18E-03	3.27E-03	3.27E-03	3.18E-03	3.31E-03	3.30E-03	3.22E-03	3.30E-03	3.42E-03	3.39E-03	3.41E-03	3.40E-03	3.35E-03	3.31E-03	3.57E-03	3.45E-03
anium (Ti)	µg/m³	3.08E-02	3.27E-03	3.27E-03	3.27E-03	6.36E-03	3.31E-03	3.30E-03	1.03E-02	1.26E-02	3.08E-02	1.02E-02	3.41E-03	7.49E-03	1.00E-02	9.28E-03	3.57E-03	3.45E-03
anadium (V)	µg/m³	1.78E-03	1.59E-03	1.63E-03	1.63E-03	1.59E-03	1.65E-03	1.65E-03	1.61E-03	1.65E-03	1.71E-03	1.69E-03	1.70E-03	1.70E-03	1.67E-03	1.66E-03	1.78E-03	1.72E-03
nc (Zn)	µg/m³	6.66E-02	6.02E-03	1.45E-02	7.38E-03	1.44E-02	6.02E-03	1.17E-02	4.36E-02	3.94E-02	6.66E-02	1.98E-02	2.26E-02	3.71E-02	4.19E-02	5.38E-02	3.69E-02	1.36E-02
conium (Zr)	µg/m³	1.78E-03	1.59E-03	1.63E-03	1.63E-03	1.59E-03	1.65E-03	1.65E-03	1.61E-03	1.65E-03	1.71E-03	1.69E-03	1.70E-03	1.70E-03	1.67E-03	1.66E-03	1.78E-03	1.72E-03
otal Uranium (U)	µg/m³	1.60E-04	1.43E-04	1.47E-04	1.47E-04	1.43E-04	1.49E-04	1.49E-04	1.45E-04	1.49E-04	1.54E-04	1.52E-04	1.53E-04	1.53E-04	1.51E-04	1.49E-04	1.60E-04	1.55E-04

Metals and Total	Fenceline Station																														
Particulates																															
Location			nceline		celine		celine	Fend	eline	Fend	celine	Fen	celine		celine		celine		celine		celine		eline		celine		celine		eline		celine
Date	dd/mm/yyyy		10/2016		0/2016		0/2016	21/10	0/2016		0/2016	02/1	1/2016	08/11	1/2016		1/2016		1/2016		1/2016	02/12	2/2016	08/12	2/2016		2/2016		2/2016	26/1	2/2016
Start Time	hh:mm		0:00		0:00		:00		:00		:00		:00		:00		:00		:00		:00		:00		:00		:00		00		:00
Sample Duration	hours		23.34		4.28		3.45		1.16		3.59		3.56		1.33		3.49		5.05		3.24		5.23		3.7		2.97		24		3.17
Technician			TH		TH		TH		TH		ſΗ		TH		M		ſΗ		TH		TH		ſΗ		TΗ		ſΗ		Ή		TH
Filter Number			090713		90717		90687		90691		91952		91956		92080		92084		92088		92092		11066		11070		12828		12982		20597
Analytical Report #		B6	L4662	B6N	M0580	B6N	Л4167	B6N	12112	B6N	15688	B60	01407	B6O)4939	B6P	2339	B6P	P4187	B6F	9738	B6C	25548	B6R	21167	B6R	5524	B6R	8490	B65	0281
Total Volumetric Flow	Am³/sample	15	60.40	1//	07.08	15	51.60	150	9.64	150	5.83	15	42.61	150	38.09	140	9.04	150	90.61	141	57.09	150	37.52	1.47	75.25	141	4.67	140	0.48	14	50.67
Analytical Results	Units	Value	RDL	Value	07.08 RDL	Value	RDL	Value	79.64 RDL	Value	RDL	Value	#2.61 RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value 14	RDL
Particulate		30.3	KDL 5	17.7	KDL 5	22.3	KDL 5	19.4	KDL 5	10	KDL 5	72.2	KDL 5	52.9	KDL 5	59.3	5.0	29.4	KDL 5	22.1	KDL 5	22.1	KDL 5	43.4	5.0	20.0	KDL 5	33.6	5.0	20.7	KDL 5
Total Mercury (Hg)	mg pg	<0.02	0.02	<0.02	0.02	<0.02	0.02	< 0.02	0.02	< 0.02	0.02	0.03	0.02	< 0.02	0.02	0.03	0.02	< 0.02	0.02	<0.02	0.02	<0.02	0.02	0.02	0.02	<0.02	0.02	<0.02	0.02	<0.02	0.02
Aluminum (AI)	hd ha	140	50	67	50	112	50	72	50	137	5.02	251	5.02	263	50	276	50	235	50	95	5.02	118	50	121	50	166	50	84	50	111	50
Antimony (Sb)	· -	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Arsenic (As)	hā hā	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Barium (Ba)	hd	13.8	1.0	11.8	1.0	8.8	1.0	8.0	1.0	6.5	1.0	35.4	1.0	27.9	1.0	19.4	1.0	8.6	1.0	15.6	1.0	12.2	1.0	11.9	1.0	12.0	1.0	8.9	1.0	6.2	1.0
Beryllium (Be)	hd ha	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0	<1.0	1.0
Bismuth (Bi)	. 3	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Boron (B)	hã hã	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0	<6.0	6.0
Cadmium (Cd)	hd	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	3.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	3.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
Chromium (Cr)	hd ha	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	5.3	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Cobalt (Co)	· -	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	3.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0	<2.0	2.0
	μg										5.0																				
Copper (Cu)	μg	82.1	5.0	55.6	5.0	92.1	5.0	34.9	5.0 50	67.4	5.0	101	5.0	91.4	5.0	79.8	5.0	41.9	5.0	71.8	5.0	49.8	5.0	44.8	5.0	56.9	5.0	33.5	5.0	56.6	5.0
Iron (Fe)	μg	413	50	266	50	354	50	180	50	288	50	1120	50	841	50	958	50	476	50	348	50	439	50	445	50	443	50	323	50	212	50
Lead (Pb)	μg	<3.0	3.0	<3.0	3.0	3.0	3.0	<3.0	3.0	<3.0	3.0	8.1	3.0	11.3	3.0	9.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	3.6	3.0	6.3	3.0	4.3	3.0	<3.0	3.0
Magnesium (Mg)	μg	222	50	112	50	164	50	114	50	164	50	541	50	418	50	675	50	217	50	120	50	196	50	390	50	286	50	162	50	144	50
Manganese (Mn)	μg	10.9	1.0	8.8	1.0	12.4	1.0	6.1	1.0	10.4	1.0	35.2	1.0	26.3	1.0	30.7	1.0	16.7	1.0	8.7	1.0	13.3	1.0	19.0	1.0	18.1	1.0	10.9	1.0	5.6	1.0
Molybdenum (Mo)	μg	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Nickel (Ni)	μg	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	5.4	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0	<3.0	3.0
Phosphorus (P)	μg	82	25	31	25	<25	25	52	25	28	25	98	25	51	25	48	25	39	25	<25	25	<25	25	<25	25	<25	25	<25	25	<25	25
Selenium (Se)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Silver (Ag)	μg	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Strontium (Sr)	μg	6.4	1.0	3.3	1.0	3.5	1.0	2.2	1.0	5.4	1.0	12.6	1.0	8.7	1.0	9.8	1.0	4.4	1.0	4.0	1.0	5.6	1.0	6.3	1.0	5.6	1.0	3.7	1.0	4.8	1.0
Thallium (TI)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Tin (Sn)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Titanium (Ti)	μg	<10	10	<10	10	<10	10	<10	10	<10	10	23	10	17	10	14	10	13	10	<10	10	<10	10	<10	10	<10	10	<10	10	<10	10
Vanadium (V)	μg	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Zinc (Zn)	μg	32.0	5.0	19.0	5.0	25.6	5.0	18.8	5.0	18.8	5.0	90.8	5.0	80.7	5.0	95.9	5.0	37.7	5.0	26.2	5.0	32.1	5.0	114	5.0	80.5	5.0	63.4	5.0	18.5	5.0
Zirconium (Zr)	μg	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0	<5.0	5.0
Total Uranium (U)	μg	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45 ¹	0.45	<0.45 ²	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45	< 0.45	0.45

Notes:

1. Total Uranium on a Hi-Vol Filter: CCV recovery for U range from 92.3% to 88.5%, data for U may be slightly biased low

2. Total Uranium on a Hi-Vol Filter: CCV recovery for U range from 91.3% to 89.8%, data for U may be slightly biased low

		Quarter 4		Fenceline														
				41	42	43	44	45	46	47	48	49	50	51	52	53	54	55
Calculated Concentrations	Units	Maximum	Minimum															
				03/10/2016	09/10/2016	15/10/2016	21/10/2016	27/10/2016	02/11/2016	08/11/2016	14/11/2016	20/11/2016	26/11/2016	02/12/2016	08/12/2016	14/12/2016	20/12/2016	26/12/2016
Particulate	μq/m³	47.45	11.01	19.418	11.014	14.280	12.128	12.618	47.452	33.310	39.559	18.483	15.167	13.921	29.419	27.427	22.543	14.269
Total Mercury (Hg)	μg/m³	2.00E-05	6.22E-06	6.41E-06	6.22E-06	6.40E-06	6.25E-06	6.64E-06	1.94E-05	6.30E-06	2.00E-05	6.29E-06	6.86E-06	6.30E-06	1.36E-05	7.07E-06	6.71E-06	6.89E-06
Aluminum (Al)	μg/m³	2.28E-01	4.17E-02	8.97E-02	4.17E-02	7.17E-02	4.56E-02	9.10E-02	2.28E-01	1.66E-01	1.84E-01	1.48E-01	6.52E-02	7.43E-02	8.20E-02	1.17E-01	5.64E-02	7.65E-02
Antimony (Sb)	µg/m³	3.53E-03	3.11E-03	3.20E-03	3.11E-03	3.20E-03	3.13E-03	3.32E-03	3.24E-03	3.15E-03	3.34E-03	3.14E-03	3.43E-03	3.15E-03	3.39E-03	3.53E-03	3.35E-03	3.45E-03
Arsenic (As)	μg/m³	2.12E-03	1.87E-03	1.92E-03	1.87E-03	1.92E-03	1.88E-03	1.99E-03	1.94E-03	1.89E-03	2.00E-03	1.89E-03	2.06E-03	1.89E-03	2.03E-03	2.12E-03	2.01E-03	2.07E-03
Barium (Ba)	μg/m³	2.29E-02	4.27E-03	8.84E-03	7.34E-03	5.64E-03	5.00E-03	4.32E-03	2.29E-02	1.76E-02	1.29E-02	5.41E-03	1.07E-02	7.68E-03	8.07E-03	8.48E-03	5.97E-03	4.27E-03
Beryllium (Be)	μg/m³	3.53E-04	3.11E-04	3.20E-04	3.11E-04	3.20E-04	3.13E-04	3.32E-04	3.24E-04	3.15E-04	3.34E-04	3.14E-04	3.43E-04	3.15E-04	3.39E-04	3.53E-04	3.35E-04	3.45E-04
Bismuth (Bi)	μg/m³	2.12E-03	1.87E-03	1.92E-03	1.87E-03	1.92E-03	1.88E-03	1.99E-03	1.94E-03	1.89E-03	2.00E-03	1.89E-03	2.06E-03	1.89E-03	2.03E-03	2.12E-03	2.01E-03	2.07E-03
Boron (B)	μg/m³	2.12E-03	1.87E-03	1.92E-03	1.87E-03	1.92E-03	1.88E-03	1.99E-03	1.94E-03	1.89E-03	2.00E-03	1.89E-03	2.06E-03	1.89E-03	2.03E-03	2.12E-03	2.01E-03	2.07E-03
Cadmium (Cd)	μg/m³	7.07E-04	6.22E-04	6.41E-04	6.22E-04	6.40E-04	6.25E-04	6.64E-04	6.48E-04	6.30E-04	6.67E-04	6.29E-04	6.86E-04	6.30E-04	6.78E-04	7.07E-04	6.71E-04	6.89E-04
Chromium (Cr)	µg/m³	3.34E-03	1.56E-03	1.60E-03	1.56E-03	1.60E-03	1.56E-03	1.66E-03	1.62E-03	3.34E-03	1.67E-03	1.57E-03	1.72E-03	1.57E-03	1.69E-03	1.77E-03	1.68E-03	1.72E-03
Cobalt (Co)	μg/m³	7.07E-04	6.22E-04	6.41E-04	6.22E-04	6.40E-04	6.25E-04	6.64E-04	6.48E-04	6.30E-04	6.67E-04	6.29E-04	6.86E-04	6.30E-04	6.78E-04	7.07E-04	6.71E-04	6.89E-04
Copper (Cu)	µg/m³	6.55E-02	2.18E-02	5.26E-02	3.46E-02	5.90E-02	2.18E-02	4.48E-02	6.55E-02	5.76E-02	5.32E-02	2.63E-02	4.93E-02	3.14E-02	3.04E-02	4.02E-02	2.25E-02	3.90E-02
Iron (Fe)	μg/m³	7.26E-01	1.13E-01	2.65E-01	1.66E-01	2.27E-01	1.13E-01	1.91E-01	7.26E-01	5.30E-01	6.39E-01	2.99E-01	2.39E-01	2.77E-01	3.02E-01	3.13E-01	2.17E-01	1.46E-01
Lead (Pb)	μg/m³	7.12E-03	9.33E-04	9.61E-04	9.33E-04	1.92E-03	9.38E-04	9.96E-04	5.25E-03	7.12E-03	6.00E-03	9.43E-04	1.03E-03	9.45E-04	2.44E-03	4.45E-03	2.88E-03	1.03E-03
Magnesium (Mg)	μg/m³	4.50E-01	6.97E-02	1.42E-01	6.97E-02	1.05E-01	7.13E-02	1.09E-01	3.51E-01	2.63E-01	4.50E-01	1.36E-01	8.24E-02	1.23E-01	2.64E-01	2.02E-01	1.09E-01	9.93E-02
Manganese (Mn)	μg/m³	2.28E-02	3.81E-03	6.99E-03	5.48E-03	7.94E-03	3.81E-03	6.91E-03	2.28E-02	1.66E-02	2.05E-02	1.05E-02	5.97E-03	8.38E-03	1.29E-02	1.28E-02	7.31E-03	3.86E-03
Molybdenum (Mo)	µg/m³	1.06E-03	9.33E-04	9.61E-04	9.33E-04	9.61E-04	9.38E-04	9.96E-04	9.72E-04	9.45E-04	1.00E-03	9.43E-04	1.03E-03	9.45E-04	1.02E-03	1.06E-03	1.01E-03	1.03E-03
Nickel (Ni)	µg/m³	3.39E-03	9.33E-04	9.61E-04	9.33E-04	9.61E-04	9.38E-04	9.96E-04	9.72E-04	9.45E-04	1.00E-03	3.39E-03	1.03E-03	9.45E-04	1.02E-03	1.06E-03	1.01E-03	1.03E-03
Phosphorus (P)	μg/m³	6.35E-02	7.87E-03	5.26E-02	1.93E-02	8.00E-03	3.25E-02	1.86E-02	6.35E-02	3.21E-02	3.20E-02	2.45E-02	8.58E-03	7.87E-03	8.47E-03	8.84E-03	8.39E-03	8.62E-03
Selenium (Se)	μg/m³	3.53E-03	3.11E-03	3.20E-03	3.11E-03	3.20E-03	3.13E-03	3.32E-03	3.24E-03	3.15E-03	3.34E-03	3.14E-03	3.43E-03	3.15E-03	3.39E-03	3.53E-03	3.35E-03	3.45E-03
Silver (Ag)	μg/m³	1.77E-03	1.56E-03	1.60E-03	1.56E-03	1.60E-03	1.56E-03	1.66E-03	1.62E-03	1.57E-03	1.67E-03	1.57E-03	1.72E-03	1.57E-03	1.69E-03	1.77E-03	1.68E-03	1.72E-03
Strontium (Sr)	µg/m³	8.17E-03	1.38E-03	4.10E-03	2.05E-03	2.24E-03	1.38E-03	3.59E-03	8.17E-03	5.48E-03	6.54E-03	2.77E-03	2.75E-03	3.53E-03	4.27E-03	3.96E-03	2.48E-03	3.31E-03
Thallium (TI)	μg/m³	3.53E-03	3.11E-03	3.20E-03	3.11E-03	3.20E-03	3.13E-03	3.32E-03	3.24E-03	3.15E-03	3.34E-03	3.14E-03	3.43E-03	3.15E-03	3.39E-03	3.53E-03	3.35E-03	3.45E-03
Tin (Sn)	µg/m³	3.53E-03	3.11E-03	3.20E-03	3.11E-03	3.20E-03	3.13E-03	3.32E-03	3.24E-03	3.15E-03	3.34E-03	3.14E-03	3.43E-03	3.15E-03	3.39E-03	3.53E-03	3.35E-03	3.45E-03
Titanium (Ti)	μg/m³	1.49E-02	3.11E-03	3.20E-03	3.11E-03	3.20E-03	3.13E-03	3.32E-03	1.49E-02	1.07E-02	9.34E-03	8.17E-03	3.43E-03	3.15E-03	3.39E-03	3.53E-03	3.35E-03	3.45E-03
Vanadium (V)	μg/m³	1.77E-03	1.56E-03	1.60E-03	1.56E-03	1.60E-03	1.56E-03	1.66E-03	1.62E-03	1.57E-03	1.67E-03	1.57E-03	1.72E-03	1.57E-03	1.69E-03	1.77E-03	1.68E-03	1.72E-03
Zinc (Zn)	μg/m³	7.73E-02	1.18E-02	2.05E-02	1.18E-02	1.64E-02	1.18E-02	1.25E-02	5.89E-02	5.08E-02	6.40E-02	2.37E-02	1.80E-02	2.02E-02	7.73E-02	5.69E-02	4.25E-02	1.28E-02
Zirconium (Zr)	μg/m³	1.77E-03	1.56E-03	1.60E-03	1.56E-03	1.60E-03	1.56E-03	1.66E-03	1.62E-03	1.57E-03	1.67E-03	1.57E-03	1.72E-03	1.57E-03	1.69E-03	1.77E-03	1.68E-03	1.72E-03
Total Uranium (U)	µg/m³	1.59E-04	1.40E-04	1.44E-04	1.40E-04	1.44E-04	1.41E-04	1.49E-04	1.46E-04	1.42E-04	1.50E-04	1.41E-04	1.54E-04	1.42E-04	1.53E-04	1.59E-04	1.51E-04	1.55E-04

QUARTERLY AMBIENT AIR QUALITY MONITORING REPORT FOR THE DURHAM YORK ENERGY CENTRE – OCTOBER TO DECEMBER 2016

Appendix H PAHs Data Summary February 8, 2017

Appendix H PAHS DATA SUMMARY

Project No.: 160950528 H.1

	Court	ice WPCP Sto	ation																
Location	dd/mm/yyyy hh:mm hours		Cou	rtice	Cou	ırtice	Cou	rtice	Cou	rtice	Cou	rtice	Cou	rtice	Cou	rtice	Cou	rtice	
Date	hh:mm			/2016		0/2016		/2016		/2016	20/11		2/12		14/12		26/12		
Start Time Sample Duration				00 .76		:00 4.1		00 3.5	0: 24	00	0:0 24:		0: 24	00	0:0 22.		0:0 23.		
Technician		110013			.76 H		Ή. Ι		H.		.07 M	71 TI		7 T		TI		Z3.	
Filter Number				CXB	328-01	DAQ		DAR		DAR7		DGG8		DGH		DGHO		DGH1	
Maxaam ID					R857 4666		O780		235		748	DMN B6P4		DO [*]	T134	DQF B6R5		DRN B6S0	
Maxxam Job # Total Volumetric Flow	١,	Am³/sample			1.29		14121 0.29		5690 1.38	86O 37		376			5575	358		352	
Analytical Results	,	Units		Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL
Benzo(a)pyrene		μg		0.0022	0.0011	0.0083	0.0014	0.0069	0.0028	0.0385	0.0055	0.0045	0.0029	0.00373	0.00069	0.0084	0.0016	< 0.014	0.014
1-Methylnaphthalene		μg		1.60	0.15	0.64	0.15	1.12	0.15	3.00	0.15	0.46	0.15	0.88	0.10	0.86	0.15	1.00	0.10
2-Methylnaphthalene Acenaphthene		µg µg		2.72 1.20	0.15 0.075	0.95 0.474	0.15 0.075	1.54 0.522	0.15 0.075	4.59 0.951	0.15 0.075	0.72 0.225	0.15 0.075	1.37 0.182	0.10 0.050	1.17 <0.075	0.15 0.075	1.40 0.346	0.10 0.050
Acenaphthylene		μg		< 0.075	0.075	<0.075	0.075	< 0.075	0.075	0.090	0.075	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	< 0.050	0.050
Anthracene		μg		<0.075	0.075	< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	<0.050	0.050	< 0.075	0.075	< 0.050	0.050
Benzo(a)fluorene		μg		<0.075 <0.15	0.075 0.15	<0.075 <0.15	0.075 0.15	<0.075 <0.15	0.075 0.15	<0.075 <0.15	0.075 0.15	<0.075 <0.15	0.075 0.15	<0.050 <0.10	0.050 0.10	<0.075 <0.15	0.075 0.15	<0.050 <0.10	0.050
Benzo(a)fluorene Benzo(b)fluoranthene		µg µg		<0.15	0.15	<0.15	0.15	< 0.15	0.15	<0.15	0.15	< 0.15	0.15	<0.050	0.050	< 0.15	0.15	<0.10	0.050
Benzo(b)fluorene		μg		< 0.15	0.15	< 0.15	0.15	< 0.15	0.15	<0.15	0.15	< 0.15	0.15	<0.10	0.10	< 0.15	0.15	< 0.10	0.10
Benzo(e)pyrene	1	μg		<0.15 <0.075	0.15 0.075	<0.15 <0.075	0.15 0.075	<0.15 <0.075	0.15 0.075	<0.15	0.15 0.075	<0.15 <0.075	0.15 0.075	<0.10 <0.050	0.10 0.050	<0.15 <0.075	0.15 0.075	<0.10 <0.050	0.10 0.050
Benzo(g,h,i)perylene Benzo(k)fluoranthene		µg µg		<0.075 <0.075	0.075	<0.075 <0.075	0.075	<0.075 <0.075	0.075	<0.075 <0.075	0.075	<0.075 <0.075	0.075	<0.050 <0.050	0.050	<0.075 <0.075	0.075	<0.050 <0.050	0.050
Biphenyl		μg		0.59	0.15	0.40	0.15	0.52	0.15	1.33	0.15	0.21	0.15	0.37	0.10	0.58	0.15	0.59	0.10
Chrysene		μg		<0.075	0.075	<0.075	0.075	< 0.075	0.075	<0.075	0.075	<0.075	0.075	<0.050	0.050	<0.075	0.075	< 0.050	0.050
Dibenz(a,h)anthracene		μg		<0.075	0.075	< 0.075	0.075	< 0.075	0.075	<0.075	0.075	< 0.075	0.075	<0.050	0.050	< 0.075	0.075	< 0.050	0.050
Dibenzo(a,c) anthracene + Picene 1		μg		<0.10	0.10	< 0.15	0.15	< 0.15	0.15	<0.15	0.15	< 0.15	0.15	<0.10	0.10	<0.15	0.15	<0.15	0.15
Fluoranthene Indeno(1,2,3-cd)pyrene		µg µg		0.246 <0.075	0.075 0.075	0.129 <0.075	0.075 0.075	0.147 <0.075	0.075 0.075	0.303 <0.075	0.075 0.075	<0.075 <0.075	0.075 0.075	0.104 <0.050	0.050 0.050	0.096 <0.075	0.075 0.075	0.218 <0.050	0.050 0.050
Naphthalene		μg		5.99	0.11	3.50	0.11	5.35	0.11	16.1	0.11	2.57	0.11	4.58	0.072	5.60	0.11	6.00	0.030
o-Terphenyl		μg		<0.15	0.15	< 0.15	0.15	< 0.15	0.15	< 0.15	0.15	< 0.15	0.15	<0.10	0.10	< 0.15	0.15	< 0.10	0.10
Perylene		μg		<0.15	0.15	< 0.15	0.15	< 0.15	0.15	<0.15	0.15	< 0.15	0.15	<0.10	0.10	<0.15	0.15	<0.10	0.10
Phenanthrene Pyrene		µg µg		1.28 0.129	0.075 0.075	0.570 <0.075	0.075 0.075	0.573 <0.075	0.075 0.075	1.31 0.168	0.075 0.075	0.270 <0.075	0.075 0.075	0.394	0.050 0.050	0.333 <0.075	0.075 0.075	0.716 0.124	0.050 0.050
Tetralin		µg µg		0.77	0.15	0.24	0.15	0.62	0.15	1.42	0.15	0.36	0.15	0.97	0.10	0.73	0.15	0.48	0.10
		Quarter 4																	
					rtice		ırtice		rtice		rtice	Cou			rtice	Cou		Cou	
					21	2	22	2	:3	2	4	2		2	:6	2		2	8
Calculated Concentrations																			
	Units	Maximum	MINIMUM																
	Units	Maximum	Minimum																
					/2016		0/2016	27/10		8/11,		20/11		2/12,		14/12		26/12	
Benzo(a)pyrene	ng/m³	0.104	0.006	6.45	E-03	2.18	3E-02	1.89	E-02	1.04	E-01	1.20	E-02	1.02	E-02	2.35	E-02	1.99	E-02
1-Methylnaphthalene	ng/m³	0.104 8.08E+00	0.006 1.22E+00	6.45 4.69	E+00	2.18 1.68	BE-02 BE+00	1.89 3.07	E-02 E+00	1.04 8.08	E-01 E+00	1.20 1.22l	E-02 E+00	1.02 2.41	E-02 E+00	2.35 2.40E	E-02 E+00	1.99 2.84	E-02 E+00
1-Methylnaphthalene 2-Methylnaphthalene	ng/m³ ng/m³ ng/m³	0.104 8.08E+00 1.24E+01	0.006 1.22E+00 1.91E+00	6.45 4.69 7.97	E+00 E+00	2.18 1.68 2.50	BE-02 BE+00 BE+00	1.89 3.07 4.23	PE-02 E+00 E+00	1.04 8.08 1.24	E-01 E+00 E+01	1.20 1.22 1.91	E-02 E+00 E+00	1.02 2.41 3.75	E-02 E+00 E+00	2.35 2.40E 3.27E	E-02 E+00 E+00	1.99 2.84 3.97	E-02 E+00 E+00
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	ng/m³ ng/m³ ng/m³ ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00	0.006 1.22E+00 1.91E+00 1.05E-01	6.45 4.69 7.97 3.52	E+00 E+00 E+00	2.18 1.68 2.50 1.25	BE-02 E+00 E+00 E+00	1.89 3.07 4.23 1.43	PE-02 E+00 E+00 E+00	1.04 8.08 1.24 2.56	E-01 E+00 E+01 E+00	1.20 1.22 1.91 5.98	E-02 E+00 E+00 E-01	1.02 2.41 3.75 4.98	E-02 E+00 E+00 E-01	2.35 2.406 3.276 1.05	E-02 E+00 E+00 E-01	1.99 2.84 3.97 9.82	E-02 E+00 E+00 E-01
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02	6.45 4.69 7.97 3.52 1.10	E+00 E+00 E+00 E+00 DE-01	2.18 1.68 2.50 1.25 9.86	BE-02 E+00 E+00 E+00 E+00 SE-02	1.89 3.07 4.23 1.43 1.03	E-02 E+00 E+00 E+00 E-01	1.04 8.08 1.24 2.56 2.42	E-01 E+00 E+01 E+00	1.20 1.22l 1.91l 5.98 9.96	E-02 E+00 E+00 E-01 E-02	1.02 2.41 3.75 4.98 6.84	E-02 E+00 E+00 E-01 E-02	2.35 2.40E 3.27E 1.05	E-02 E+00 E+00 E-01 E-01	1.99 2.84l 3.97l 9.82 7.10	E-02 E+00 E+00 E-01 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	ng/m³ ng/m³ ng/m³ ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00	0.006 1.22E+00 1.91E+00 1.05E-01	6.45 4.69 7.97 3.52 1.10	E+00 E+00 E+00	2.18 1.68 2.50 1.25 9.86 9.86	BE-02 E+00 E+00 E+00	1.89 3.07 4.23 1.43	PE-02 E+00 E+00 E+00 E+00 SE-01	1.04 8.08 1.24 2.56	E-01 E+00 E+01 E+00 E-01 E-01	1.20 1.22 1.91 5.98	E-02 E+00 E+00 E-01 E-02 E-02	1.02 2.41 3.75 4.98 6.84 6.84	E-02 E+00 E+00 E-01 E-02	2.35 2.406 3.276 1.05	E-02 E+00 E+00 E-01 E-01 E-01	1.99 2.84 3.97 9.82	E-02 E+00 E+00 E-01 E-02 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02	6.45 4.69 7.97 3.52 1.10 1.10	E-03 E+00 E+00 E+00 DE-01 DE-01	2.18 1.68 2.50 1.25 9.86 9.86	BE-02 BE+00 BE+00 BE+00 BE-02 BE-02	1.89 3.07 4.23 1.43 1.03	E-02 E+00 E+00 E+00 E-01 E-01	1.04 8.08 1.24 2.56 2.42 1.01	E-01 E+00 E+01 E+00 E-01 E-01 E-01	1.20 1.22 1.91 5.98 9.96 9.96	E-02 E+00 E+00 E-01 E-02 E-02 E-02	1.02 2.41 3.75 4.98 6.84 6.84	E-02 E+00 E+00 E-01 E-02 E-02 E-02	2.35 2.40E 3.27E 1.05 1.05	E-02 E+00 E+00 E-01 E-01 E-01 E-01	1.99 2.84E 3.97E 9.82 7.10	E-02 E+00 E+00 E-01 E-02 E-02 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 6.84E-02	6.45 4.69 7.97 3.52 1.10 1.10 2.20	E+00 E+00 E+00 E+00 DE-01 DE-01	2.18 1.68 2.50 1.25 9.86 9.86 1.97	BE-02 BE+00 BE+00 BE+00 BE-02 BE-02 BE-02	1.89 3.07 4.23 1.43 1.03 1.03	E-02 E+00 E+00 E+00 E-01 E-01 E-01 E-01	1.04 8.08 1.24 2.56 2.42 1.01	E-01 E+00 E+01 E+00 E-01 E-01 E-01	1.20 1.22l 1.91l 5.98 9.96 9.96	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01	1.02 2.41l 3.75i 4.98 6.84 6.84 6.84	E-02 E+00 E+00 E-01 E-02 E-02 E-02	2.35 2.406 3.276 1.05 1.05 1.05	E-02 E+00 E+00 E-01 E-01 E-01 E-01	1.99 2.84F 3.97F 9.82 7.10 7.10	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)fluorene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 2.20E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01	6.45 4.69 7.97 3.52 1.10 1.10 2.20 1.10	E+00 E+00 E+00 E+00 DE-01 DE-01 DE-01	2.18 1.68 2.50 1.25 9.86 9.86 1.97 9.86	8E-02 8E+00 9E+00 6E+00 6E-02 6E-02 6E-02 7E-01	1.89 3.07 4.23 1.43 1.03 1.03 2.06	E-02 E+00 E+00 E+00 E-01 E-01 E-01 E-01	1.04 8.08 1.24 2.56 2.42 1.01 1.01	E-01 E+00 E+01 E+00 E-01 E-01 E-01 E-01 E-01 E-01	1.20 1.22l 1.91l 5.98 9.96 9.96 1.99	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02	1.02 2.41l 3.75i 4.98 6.84 6.84 6.84	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-02 E-01 E-01	2.35 2.400 3.270 1.05 1.05 1.05 2.09	E-02 E+00 E+00 E-01 E-01 E-01 E-01 E-01	1.99 2.84f 3.97f 9.82 7.10 7.10 7.10	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(c)pyrene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 2.20E-01 2.20E-01 2.20E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 6.84E-02 1.37E-01 1.37E-01	6.45 4.69 7.97 3.52 1.10 1.10 2.20 1.10 2.20 2.20	EE-03 E+00 E+00 E+00 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01	2.18 1.68 2.50 1.25 9.86 9.86 9.86 1.97 9.86	BE-02 BE+00 BE+00 BE-02 BE-02 BE-02 FE-01 BE-02 FE-01	1.89 3.07 4.23 1.43 1.03 1.03 2.06 1.03 2.06	EE-02 E+00 E+00 E+00 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	1.04 8.08 1.24 2.56 2.42 1.01 1.01 2.02 1.01 2.02	E-01 E+00 E+01 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.20 1.22 1.91 5.98 9.96 9.96 9.96 1.99 9.96 1.99	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-01	1.02 2.411 3.75 4.98 6.84 6.84 6.84 1.37 6.84 1.37	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-01	2.35 2.40E 3.27E 1.05 1.05 1.05 2.09 1.05 2.09 2.09	E-02 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.99 2.84t 3.97t 9.82 7.10 7.10 7.10 1.42 7.10 1.42 1.42	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-01
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Actariacene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(b)fluorene Benzo(e)pyrene Benzo(e)pyrene Benzo(b)pluorene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 2.20E-01 1.10E-01 2.20E-01 1.10E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 6.84E-02 1.37E-01 1.37E-01 6.84E-02	6.45 4.69 7.97 3.52 1.10 1.10 2.20 1.10 2.20 2.20 1.10	6E-03 E+00 E+00 E+00 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01	2.18 1.68 2.50 1.25 9.86 9.86 9.86 1.97 9.86 1.97	BE-02 BE+00 BE+00 BE-02 BE-02 BE-02 FE-01 BE-02 FE-01 FE-01 FE-01	1.89 3.07 4.23 1.43 1.03 1.03 2.06 1.03 2.06 2.06 1.03	EE-02 E+00 E+00 E+00 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	1.04 8.08 1.24 2.56 2.42 1.01 1.01 2.02 1.01 2.02 2.02	E-01 E+00 E+01 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.22l 1.91l 5.98 9.96 9.96 9.96 1.99 9.96 1.99 9.96	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-01	1.02 2.41l 3.75l 4.98 6.84 6.84 1.37 6.84 1.37 6.84	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-01 E-01	2.35 2.40E 3.27E 1.05 1.05 1.05 2.09 1.05 2.09 2.09 1.05	E-02 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.99 2.84f 3.97f 9.82 7.10 7.10 7.10 1.42 7.10 1.42 7.10	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-01
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(b)prene Benzo(b, l.)perylene Benzo(b, lluoranthene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 2.20E-01 1.10E-01 2.20E-01 1.10E-01 1.10E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 6.84E-02 1.37E-01 1.37E-01 6.84E-02 6.84E-02	6.45 4.69 7.97 3.52 1.10 1.10 2.20 1.10 2.20 2.20 1.10	E+00 E+00 E+00 E+00 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01	2.18 1.68 2.50 1.25 9.86 9.86 1.97 9.86 1.97 9.86 9.86	8E-02 6E+00 6E+00 6E+00 6E-02 6E-02 6E-02 7E-01 6E-02 7E-01 7E-01 6E-02 6E-02 7E-01 6E-02	1.89 3.07 4.23 1.43 1.03 1.03 1.03 2.06 1.03 2.06 1.03 1.03	E-02 E+00 E+00 E+00 E+00 iE-01	1.04 8.08 1.24 2.56 2.422 1.01 1.01 2.02 1.01 2.02 2.02 1.01	E-01 E+00 E+01 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.22l 1.91l 5.98 9.96 9.96 1.99 9.96 1.99 9.96 9.96	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-02	1.02 2.41l 3.75l 4.98 6.84 6.84 1.37 6.84 1.37 6.84 6.84	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-02	2.35 2.40l 3.27l 1.05 1.05 1.05 2.09 1.05 2.09 2.09 1.05 1.05	E-02 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.99 2.844 3.974 9.82 7.10 7.10 1.42 7.10 1.42 7.10 7.10	E-02 E-+00 E-+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-02 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(e)pyrene Benzo(e)pyrene Benzo(e)hl)perylene Benzo(b,hl)perylene Benzo(k)fluoranthene Biphenyl	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 2.20E-01 1.10E-01 2.20E-01 1.10E-01 3.58E+00	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 6.84E-02 1.37E-01 1.37E-01 0.84E-02 6.84E-02 6.84E-02 5.58E-01	6.45 4.69 7.97 3.52 1.10 1.10 2.20 1.10 2.22 2.22 1.10 1.10	E-03 E+00 E+00 E+00 E+00 E-01 DE-01	2.18 1.68 2.50 1.25 9.86 9.86 1.97 9.86 1.97 9.86 9.86	3E-02 iE+00 iE+00 iE+00 iE+00 iE-02 iE-02 iE-01 iE-01 iE-01 iE-01 iE-01 iE-02 iE-02 iE-01 iE-01 iE-01 iE-02 iE-01 iE-01 iE-01 iE-01 iE-01 iE-01 iE-01 iE-02 iE-02	1.89 3.07 4.23 1.43 1.03 1.03 2.06 1.03 2.06 1.03 1.03	E-02 E+00 E+00 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.04 8.08 1.24 2.56 2.422 1.01 1.01 2.02 1.011 2.02 2.02 1.01 1.01	E-01 E+00 E+01 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.22l 1.91l 5.98 9.96 9.96 1.99 9.96 1.99 9.96 9.96 9.96	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-02 E-02 E-02 E-02	1.02 2.41l 3.75 4.98 6.84 6.84 1.37 6.84 1.37 6.84	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02	2.35 2.40k 3.27k 1.05 1.05 1.05 2.09 1.05 2.09 2.09 1.05 1.05	E-02 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.99 2.84k 3.97k 9.82 7.10 7.10 7.10 1.42 7.10 1.42 7.10 7.10	E-02 E-00 E-00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-01 E-02 E-02 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene Benzo(g),hi)perylene Benzo(g)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Biphenyl Chrysene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E.01 1.10E-01 1.10E-01 1.20E-01 1.10E-01 2.20E-01 1.10E-01 1.10E-01 3.58E+00 1.10E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 6.84E-02 1.37E-01 1.37E-01 1.37E-01 6.84E-02 5.88E-02 5.58E-01	6.45 4.69 7.97 3.52 1.10 1.10 2.20 1.10 2.20 2.20 2.20 1.10 1.1	E-03 E+00 E+00 E+00 E-01 DE-01	2.18 1.68 2.50 1.25 9.86 9.86 1.97 9.86 1.97 9.86 1.97 9.86 9.86	3E-02 iE+00 iE+00 iE+00 iE+00 iE-02 iE-02 iE-02 iE-01 iE-02 iE-02 iE-01 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-03 iE-04 iE-04 iE-04 iE-04 iE-05 iE	1.89 3.07 4.23 1.43 1.03 1.03 2.06 1.03 2.06 1.03 1.03 1.03	E-02 E+00 E+00 E+00 E+00 E-101 E-01 E-01 E-01 E-01 E-01 E-01 E	1.04 8.08 1.24 2.56 2.422 1.01 1.01 2.022 1.02 2.022 1.01 1.01	E-01 E+00 E+01 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.22l 1.91l 5.98 9.96 9.96 1.99 9.96 1.99 9.96 9.96 9.96	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02	1.02 2.41l 3.75 4.98 6.84 6.84 1.37 6.84 1.37 6.84 1.01l 6.84	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02	2.35 2.40ld 3.27l 1.05 1.05 1.05 2.09 1.05 2.09 2.09 1.05 1.05 1.05	E-02 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.99 2.84k 3.97k 9.82 7.10 7.10 1.42 7.10 1.42 7.10 7.10 7.10	E-02 E-00 E-00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(b)fluorene Benzo(e)pyrene Benzo(e)pyrene Benzo(g),hi)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 2.20E-01 1.20E-01 1.20E-01 1.10E-01 3.58E+00 1.10E-01 1.10E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 1.37E-01 1.37E-01 6.84E-02 6.84E-02 6.84E-02 6.84E-02	6.45 4.69 7.97 3.52 1.10 1.10 2.20 1.10 2.20 1.10 1.10 1.1	EE-03 EF-00 EF-00 EF-00 EF-01 DE-01	2.18 1.68 2.50 1.25 9.86 9.86 1.97 9.86 1.97 9.86 1.99 9.86 9.86	3E-02 IE+00 IE+00 IE+00 SE-02 SE-02 SE-02 IE-01 SE-02 IE-01 SE-02 IE-01 SE-02 IE-01 SE-02 IE-01 SE-02 SE-02 SE-02 SE-02 SE-02 SE-02	1.89 3.07 4.23 1.43 1.03 1.03 2.06 1.03 2.06 1.03 1.03 1.03 1.03	E-02 E+00 E+00 E+00 E+00 E+00 E+01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	1.04 8.08 1.24 2.56 2.42 1.01 1.01 2.02 2.02 1.01 1.01 1.01 1.0	E-01 E+00 E+01 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.22l 1.91l 5.98 9.96 9.966 1.99 9.96 1.99 9.96 9.96 9.9	E-02 E+00 E+00 E-01 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.02 2.41l 3.75 4.98 6.844 6.844 1.37 6.84 1.37 6.84 1.01l 6.844	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02	2.35i 2.40li 3.27t 1.05 1.055 1.055 2.09 1.056 2.09 1.050 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055	E-02 E+00 E+00 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.99 2.84l 3.97l 9.82 7.10 7.10 1.42 7.10 1.42 7.10 1.67l 7.10 7.10 7.10 7.10 7.10	E-02 E-00 E-01 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(e)pyrene Benzo(g),hi)perylene Benzo(k)fluoranthene Biphenyl Chrysene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E.01 1.10E-01 1.10E-01 1.20E-01 1.10E-01 2.20E-01 1.10E-01 1.10E-01 3.58E+00 1.10E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 6.84E-02 1.37E-01 1.37E-01 1.37E-01 6.84E-02 5.88E-02 5.58E-01	6.45 4.69 7.97 3.52 1.10 1.10 2.20 2.20 2.21 1.10 1.73 1.11 1.10 1.11	E-03 E+00 E+00 E+00 E-01 DE-01	2.18 1.68 2.50 1.25 9.86 9.86 1.97 9.86 1.97 9.86 9.88 1.05 9.86	3E-02 iE+00 iE+00 iE+00 iE+00 iE-02 iE-02 iE-02 iE-01 iE-02 iE-02 iE-01 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-04 iE-04 iE-05 iE-05 iE-05 iE-05 iE-05 iE-05 iE-06 iE-06 iE-07 iE	1.89 3.07 4.23 1.43 1.03 1.03 2.06 1.03 2.06 1.03 1.03 1.03	E-02 E+00 E+00 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.04 8.08 1.24 2.56 2.422 1.01 1.01 2.022 1.02 2.022 1.01 1.01	E-01 E+00 E+00 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.22l 1.91l 5.98 9.96 9.96 1.99 9.96 1.99 9.96 9.96 9.96	E-02 E+00 E+00 E+01 E-01 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01	1.02 2.41l 3.75 4.98 6.84 6.84 1.37 6.84 1.37 6.84 1.01l 6.84	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02	2.35 2.40ld 3.27l 1.05 1.05 1.05 2.09 1.05 2.09 2.09 1.05 1.05 1.05	E-02 E+00 E+00 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.99 2.84k 3.97k 9.82 7.10 7.10 1.42 7.10 1.42 7.10 7.10 7.10	E-02 E-00 E-01 E-02 E-02 E-02 E-02 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)prene Benzo(b,n)perylene Benzo(b,n)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 2.20E-01 1.20E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 6.84E-02 1.37E-01 1.37E-01 6.84E-02 6.84E-02 5.58E-01 6.84E-02 1.37E-01	6.45 4.69 7.97 3.52 1.11 1.10 2.20 2.20 2.20 2.20 1.11 1.17 1.17 1.11 1.11 1.14	EE-03 EF-00 EF-00 EF-00 EF-01	2.18 1.68 2.50 1.25 9.86 9.86 1.97 9.86 1.97 9.86 9.86 9.86 1.05 9.86	3E-02 iE+00 iE+00 iE+00 iE+00 iE+00 iE+00 iE+02 iE-02 iE-01 iE-01 iE-01 iE-01 iE-02 iE-00 iE-00 iE-00	1.89 3.07 4.23 1.43 1.03 1.03 2.06 1.03 2.06 1.03 1.03 1.03 1.03 2.06 2.06 1.03 1.03 1.03 2.06 2.06 2.06 2.06 2.06 2.06 2.06 2.06	E-02 E+00 E+00 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.04 8.08 1.24 2.56 2.42 1.01 1.01 2.02 2.02 2.02 2.02 1.01 1.01	E-01 E+00 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.22(1.91) 5.98 9.966 9.96 1.99 9.96 1.99 9.96 5.58 9.96 9.966	E-02 E+00 E+00 E+02 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02	1.02 2.41 3.75 4.98 6.84 6.84 1.37 6.84 1.37 6.84 6.84 1.01 6.84 6.84 1.37 2.85	E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02	2.35 2.40ld 3.27lf 1.05 1.05 1.05 2.09 2.09 2.09 2.09 1.05 1.05 1.05 1.05 2.09	E-02 E+00 E+00 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.99 2.844 3.970 9.82 7.100 7.100 1.42 7.10 1.42 7.10 7.10 7.10 7.10 7.10 2.13	E-02 E-00 E-01 E-02 E-02 E-02 E-02 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(e)pyrene Benzo(e)pyrene Benzo(g,h,l)perylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenzo(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 2.20E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 1.37E-01 1.37E-01 6.84E-02 5.84E-02 5.58E-01 6.84E-02 5.58E-01 6.84E-02 1.37E-01 6.84E-02	6.45 4.69 7.97 3.52 1.10 1.11 1.10 2.20 2.20 2.11 1.10 1.17 1.17 1.10 1.47 7.22 1.110	E-03 E+00 E+00 E+00 E+00 DE-01	2.18 1.68 2.50 1.255 9.86 9.88 9.86 1.97 1.97 9.86 9.88 1.05 9.86 9.88 9.86	3E-02 iE+00 iE+00 iE+00 iE+00 iE+00 iE+00 iE+02 iE-02 iE-01 iE-01 iE-01 iE-02 iE-02 iE-02 iE-02 iE-01 iE-02 iE-00 iE-02 iE-00 iE-00 iE-00 iE-00 iE-00 iE-00	1.89 3.07 4.23 1.43 1.03 1.03 2.06 2.06 2.06 1.03 1.03 1.03 2.06 2.06 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	E-02 E+00 E+00 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.04 8.08 1.24 2.56 2.42 1.01 1.01 1.01 2.02 1.01 2.02 2.02 2.0	E-01 E+00 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.22[1.91] 5.98 9.966 9.96 1.99 9.96 1.99 9.96 9.96 9.9	E-02 E+00 E+00 E+00 E+01 E-01 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-02 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02	1.02 2.41 3.75 4.98 6.84 6.84 1.37 6.84 1.37 6.84 6.84 1.01 6.84 6.84 1.37 2.85	E-02 E+00 E+00 E-01 E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02	2.35 2.40(a) 3.27(f) 1.05 1.05 1.05 2.09 1.05 2.09 2.09 2.09 1.05 1.05 1.05 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09	E-02 E+00 E+00 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.99 2.844 3.970 9.82 7.100 7.100 1.42 7.10 1.42 7.10 7.10 7.10 7.10 7.10 1.670 7.10 6.19	E-02 E-00 E-00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(c)pyrene Benzo(c)hlperylene Benzo(c)hlperylene Benzo(c)fluoranthene Biphenyl Chrysene Dibenz(a,b)anthracene Dibenzo(a,c) anthracene Indeno(1,2,3-cd)pyrene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 2.20E-01 1.10E-01 2.20E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 1.37E-01 1.37E-01 6.84E-02 6.84E-02 6.84E-02 6.84E-02 1.37E-01 0.88E-02 6.84E-02 0.84E-02	6.45 4.69 7.97 3.555 1.10 1.10 1.11 2.20 2.20 1.10 1.11 1.10 1.11 1.10 1.14 7.21 1.10 1.176	EE-03 EF-00 EF-00 EF-00 EF-01 DE-01	2.18 1.68 2.50 1.255 9.86 9.86 9.86 1.97 1.97 9.86 9.86 9.86 9.86 9.86 9.86 9.86	3E-02 iE+00 iE+00 iE+00 iE+00 iE+00 iE+00 iE+00 iE-02 iE-02 iE-02 iE-01 iE-01 iE-01 iE-01 iE-02	1.89 3.07 4.23 1.43 1.03 1.03 2.06 2.06 2.06 1.03 1.03 1.03 2.06 2.06 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	E-02 E+00 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.04 8.08 1.24 2.56 2.422 1.01 1.01 2.02 1.01 2.02 2.02 1.01 1.01	E-01 E+00 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.22[1.91] 5.988 9.96 9.96 1.99 1.99 1.99 9.96 9.96 9.96	E-02 E+00 E+00 E+00 E+01 E-02 E-02 E-02 E-01 E-01 E-01 E-02 E-01	1.02 2.411 3.751 4.989 6.844 6.844 1.37 6.844 1.011 6.844 6.844 1.37 2.855 6.845	E-02 E+00 E+00 E-02 E-02 E-02 E-01 E-01 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02	2.35 2.40(1 3.27(1 1.055 1.05 1.05 2.09 1.05 2.09 2.09 1.05 1.05 1.05 1.05 2.09 2.09	E-02 E+00 E+00 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.99 2.844 3.97i 9.822 7.10 7.10 7.10 1.42 7.10 1.42 7.10 7.10 7.10 1.67i 7.10 2.13 6.19 7.10	E-02 E-00 E-00 E-01 E-02 E-02 E-01 E-02 E-02 E-01 E-01 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluorene Benzo(b)fluorene Benzo(b)fluorene Benzo(c)byrene Benzo(c)pyrene Benzo(c)hilperylene Benzo(k)fluoranthene Biphenyl Chrysene Dibenz(a,h)anthracene Dibenz(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 1.20E-01 1.10E-01 2.20E-01 2.20E-01	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 1.37E-01 6.84E-02 5.58E-01 6.84E-02 5.58E-01 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 1.37E-01	6.45 4.69 7.977 3.525 1.10 1.10 1.10 2.20 1.11 1.10 1.73 1.10 1.14 7.21 1.10 1.76 2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.2	E-03 E+00 E+00 E+00 E+00 E-101 E-01 E-01 E-01 E-01 E-01 E-01 E	2.18 1.68 2.50 9.86 9.86 9.86 1.97 9.86 1.97 9.86 9.86 1.93 9.86 9.86 9.88 9.88 9.88 9.88	3E-02 iE+00 iE+00 iE+00 iE+00 iE-02 iE-02 iE-01 iE-01 iE-01 iE-01 iE-02 iE-02 iE-02 iE-02 iE-02 iE-02 iE-01 iE-02 iE-03 iE-03 iE-03 iE-04 iE-04 iE-04 iE-04	1.89 3.07 4.23 1.43 1.03 1.03 1.03 2.06 2.06 2.06 1.03 1.03 1.03 2.06 4.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1	E-02 E+00 E+00 E+00 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.04 8.08 1.24 2.56 2.42 1.01 1.01 2.02 1.01 2.02 2.02 1.01 1.01	E-01 E+00 E+00 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.22[1.91] 5.988 9.96 9.96 1.99 1.99 1.99 9.96 9.96 9.96	E-02 E+00 E+00 E+01 E-02 E-02 E-01	1.02 2.41l 3.75 ⁵ 4.98 6.844 6.844 1.37 6.844 1.37 6.84 6.84 1.01l 6.84 6.84 1.37 2.855 6.84 1.25 1.37	E-02 E-00 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-02 E-02 E-00 E-00 E-02 E-00 E-00 E-00	2.35 2.40f 3.27f 1.05 1.05 1.05 2.09 1.05 2.09 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	E-02 E-00 E-00 E-01 E-01 E-01 E-01 E-01 E-01	1.99 2.84t 3.97t 9.82 7.10 7.10 1.42 7.10 1.42 7.10 7.10 7.10 7.10 2.13 6.19 7.10 1.67t 7.10 1.67t 7.10	E-02 E-00 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-02 E-02 E-00 E-02 E-02 E-02 E-02 E-02
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluorene Benzo(b)fluorene Benzo(c)hi)perylene Benzo(c)hi)perylene Benzo(c)hi)perylene Benzo(c)hi)perylene Benzo(c)hi)perylene Benzo(c)fluoranthene Bijhenyl Chrysene Dibenz(a,h)anthracene Dibenzo(a,c) anthracene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 2.20E-01 1.10E-01 2.20E-01 2.20E-01 2.20E-01 2.20E-01 3.75E+00	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 6.84E-02 1.37E-01 1.37E-01 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 1.37E-01 0.37E-01 0.37E-01 1.37E-01 1.37E-01	6.45 4.69 7.99 3.52 1.10 1.110 2.20 1.110 2.20 2.2(2) 1.10 1.10 1.17 1.10 1.44 7.2(2) 1.10 1.76 2.20 2.2(2) 3.75	E-03 E-00 E-00 E-00 E-01 DE-01	2.18 1.68 2.505 9.88 9.86 9.88 1.97 9.86 1.97 9.86 9.88 1.97 9.86 9.86 9.86 1.97 9.86 9.86	3E-02 IE+00 IE+00 SE-02 SE-02 SE-02 FE-01 SE-02 FE-01 FE-01 SE-02 FE-01 SE-02 FE-01 FE-01 FE-01 FE-02 FE-01 FE-02 FE-01 FE-01 FE-01 FE-01 FE-01	1.89 3.07 4.23 1.43 1.03 1.03 2.06 1.03 2.06 2.06 2.06 2.06 4.03 2.06 4.03 1.03 1.47 2.06 2.06 2.06 1.57	E-02 E-00 E-00 E-00 E-00 E-01 E-01 E-01 E-01	1.04 8.08 1.244 2.56 2.42 1.01 1.01 2.02 2.02 2.02 2.02 1.01 1.01	E-01 E+00 E+00 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.221 1.9111 5.98 9.966 9.966 1.99 9.966 9.966 9.966 9.966 9.966 9.966 1.99 9.966 6.831 1.99	E-02 E+00 E+01 E-01 E-02 E-02 E-01 E-02 E-01 E-02 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.02 2.41l 3.75 ⁵ 5 4.98 6.844 6.844 1.37 6.844 1.01l 6.844 1.37 2.855 6.84 1.25 1.37	E-02 E-00 E-00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-03 E-04 E-05 E-06 E-06 E-07 E-08 E-09 E-09 E-09 E-09 E-09 E-09 E-09 E-09	2.35 2.40f 3.27f 1.05 1.05 1.05 2.09 1.05 2.09 1.05 1.05 1.05 1.05 1.05 1.05 2.09 2.09 2.09 2.09 1.05 1.05 1.05 1.05 1.05 1.05	E-02 E-00 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.99 2.84i 3.97i 9.82 7.10 7.10 1.42 7.10 1.42 7.10 7.10 7.10 7.10 1.67i 7.10 7.10 1.71 1.70 1.70 1.70 1.70 1.42 2.03i	E-02 E-00 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-02 E-00 E-00 E-00 E-00 E-00 E-00
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluorene Benzo(b)fluorene Benzo(b)fluorene Benzo(b)fluorene Benzo(b)fluorene Benzo(b)fluorene Benzo(b)fluorene Benzo(b)fluorene Benzo(c)pyrene Benzo(b)fluorene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)pyrene Benzo(c)fluoranthene Biphenyl Chrysene Dibenz(a,b)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene Pyrene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 2.20E-01 1.10E-01 2.20E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 2.20E-01 2.20E-01 2.20E-01 2.3E-00 4.34E+01 2.20E-01 2.3E-00 4.53E-00	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 1.37E-01 1.37E-01 6.84E-02 1.37E-01 1.37E-01 1.37E-01 6.84E-02 6.84E-02 6.84E-02 1.37E-01 9.96E-02 6.84E-02 1.37E-01 1.37E-01 1.37E-01 1.37E-01	6.45 4.69 7.97 3.525 1.10 1.11 1.11 2.20 1.11 2.21 1.10 1.11 1.73 1.11 1.10 1.44 7.21 1.11 1.76 2.20 2.20 2.20 3.75 3.78	E-03 E+00 E+00 E+00 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	2.18 1.68 2.50 9.86 9.86 9.88 1.97 9.88 1.97 9.86 9.88 1.05 9.86 1.97 3.35 9.86 9.86 9.86 9.88	3E-02 IE+00 IE+00 IE+00 IE+00 IE+00 IE-02 IE-02 IE-02 IE-01 IE-02 IE-03 IE-02 IE-03	1.89 3.07 4.23 1.03 1.03 1.03 2.06 1.03 2.06 2.06 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	E-02 E+00 E+00 E+00 E+00 E+00 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.04 8.08 1.24 2.566 2.42 1.01 1.01 2.02 2.02 2.02 2.02 1.01 1.01	E-01 E+00 E+00 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.221 1.911 5.988 9.96 9.96 9.96 1.99 9.96 9.96 5.58 9.96 1.99 9.96 6.831 1.99 1.99	E-02 E-00 E-100 E-100 E-101 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.02 2.41l 3.755 4.98 6.844 6.844 1.377 6.84 6.844 1.377 2.855 6.844 1.377 2.855 6.844 1.377 1.377 1.377 1.377 1.381	E-02 E-00 E-00 E-01 E-01 E-02 E-00 E-01 E-02 E-00 E-01 E-01 E-01 E-01 E-01 E-01 E-01	2.35 2.40f 3.27f 1.05 1.05 1.05 2.09 1.05 2.09 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	E-02 E-00 E-100 E-101 E-01 E-01 E-01 E-01 E-	1.99 2.844 3.97ii 9.82 7.10 7.10 7.10 1.42 7.10 7.10 7.10 7.10 1.67i 7.10 1.71	E-02 E-00 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01
1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluorene Benzo(b)fluorene Benzo(b)fluorene Benzo(c)pyrene Benzo(g,h.i)perylene Benzo(g,h.i)perylene Benzo(g,h.i)perylene Benzo(g,h.i)perylene Benzo(g,h.i)perylene Benzo(g,d.i)perylene Benzo(a,c) anthracene Dibenz(a,c) anthracene Dibenz(a,c) anthracene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene	ng/m³	0.104 8.08E+00 1.24E+01 3.52E+00 2.42E-01 1.10E-01 1.10E-01 2.20E-01 1.10E-01 2.20E-01 2.20E-01 2.20E-01 2.20E-01 3.75E+00	0.006 1.22E+00 1.91E+00 1.05E-01 6.84E-02 6.84E-02 1.37E-01 6.84E-02 1.37E-01 1.37E-01 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 6.84E-02 1.37E-01 0.37E-01 0.37E-01 1.37E-01 1.37E-01	6.45 4.69 7.99 3.52 1.10 1.10 2.20 1.10 2.22 2.20 1.10 1.1	E-03 E-00 E-00 E-00 E-01 DE-01	2.18 1.688 2.555 9.86 9.86 9.86 1.97 9.86 1.97 9.86 9.86 9.86 1.97 9.33 9.86 9.86 9.86 9.86 9.86 9.86 9.86 9.86	3E-02 IE+00 IE+00 SE-02 SE-02 SE-02 FE-01 SE-02 FE-01 FE-01 SE-02 FE-01 SE-02 FE-01 FE-01 FE-01 FE-02 FE-01 FE-01 FE-01 FE-01 FE-01 FE-01 FE-01 FE-01	1.89 3.07 4.233 1.433 1.033 1.033 2.066 1.032 2.066 1.033 1.033 1.033 1.033 1.033 1.033 1.030 2.066 2.066 1.031	E-02 E-00 E-00 E-00 E-00 E-01 E-01 E-01 E-01	1.04 8.08 1.24 2.566 2.42 1.01 1.01 2.02 2.02 2.02 2.02 1.01 1.01	E-01 E+00 E+01 E+00 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	1.20 1.221 1.9111 5.98 9.966 9.966 1.99 9.966 9.966 9.966 9.966 9.966 9.966 1.99 9.966 6.831 1.99	E-02 E-00 E-01 E-02 E-01 E-01 E-01 E-02 E-01 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.02 2.41l 3.75 ⁵ 5 4.98 6.844 6.844 1.37 6.844 1.01l 6.844 1.37 2.855 6.84 1.25 1.37	E-02 E-00 E-101 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-00 E-02 E-00 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	2.35 2.40f 3.27f 1.05 1.05 1.05 2.09 1.05 2.09 1.05 1.05 1.05 1.05 1.05 1.05 2.09 2.09 2.09 2.09 1.05 1.05 1.05 1.05 1.05 1.05	E-02 E-00 E-01 E-01 E-01 E-01 E-01 E-01 E-01	1.99 2.84i 3.97i 9.82 7.10 7.10 1.42 7.10 1.42 7.10 7.10 7.10 7.10 1.67i 7.10 7.10 1.71 1.70 1.70 1.70 1.70 1.42 2.03i	E-02 E-01 E-02 E-02 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01

Polycyclic Aromatic Hydrocarbons	Rundle Road Station																	
Location	Rundle Road Station dd/mm/yyyy hh:mm hours				ndle 0/2016		ndle 1/2016	Rur 27/10	ndle		ndle /2016		ndle /2016	Rur 02/12	ndle		ndle 2/2016	Rundle 26/12/2016
Date Start Time	hh:mm				:00		00	_	00		00		00		00		:00	0:00
Sample Duration					3.66		.77		.17		.32		.06		.49		3.54	7.49
Technician					ſΗ	T	Н		Н		M		Н		Н		ГН	TH
Filter Number					329-01		310-01		553-01		742-01		897-01		084-01		051-01	DGH106-01
Maxaam ID					R858 4666	DG0 B6M			236 5690	DK1 B6O	749		N613		T135		P476 25537	N/A N/A
Maxxam Job # Total Volumetric Flow		Am ³ /samp	1-		2.02		1.96		5.43		9.51		4166 7.72		5575 9.08		5.42	114.63
Analytical Results		Am /samp Units	ie	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL	Value	RDL RDL	Value RDL
Benzo(a)pyrene		μg		0.0103	0.0014	0.0170	0.0014	0.0062	0.0052	0.0665	0.0037	< 0.0041	0.0041	0.0052	0.0010	0.0127	0.0015	Taloo KD2
1-Methylnaphthalene		μg		3.31	0.15	5.21	0.15	1.29	0.15	5.04	0.15	0.32	0.15	0.96	0.10	1.21	0.15	
2-Methylnaphthalene		μg		6.58	0.15	9.95	0.15	2.04	0.15	8.41	0.15	0.48	0.15	1.47	0.10	1.82	0.15	
Acenaphthene		μg		3.99 <0.075	0.075 0.075	5.55 <0.075	0.075 0.075	1.05	0.075 0.075	2.52 <0.075	0.075 0.075	0.138 <0.075	0.075 0.075	0.204 <0.050	0.050 0.050	<0.075 0.078	0.075 0.075	
Acenaphthylene Anthracene		hā hā		0.144	0.075	<0.075	0.075	<0.075	0.075	<0.075	0.075	<0.075	0.075	<0.050	0.050	< 0.078	0.075	
Benzo(a)anthracene		μg		< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	
Benzo(a)fluorene		μg		< 0.15	0.15	< 0.15	0.15	<0.15	0.15	< 0.15	0.15	< 0.15	0.15	<0.10	0.10	< 0.15	0.15	
Benzo(b)fluoranthene		μg		<0.075	0.075	<0.075	0.075	< 0.075	0.075	<0.075	0.075	<0.075	0.075	< 0.050	0.050	<0.075	0.075	
Benzo(b)fluorene		μg		<0.15	0.15 0.15	<0.15 <0.15	0.15 0.15	<0.15	0.15 0.15	<0.15 <0.15	0.15 0.15	<0.15 <0.15	0.15	<0.10	0.10 0.10	<0.15	0.15 0.15	
Benzo(e)pyrene Benzo(g,h,i)perylene		hā hā		<0.15 <0.075	0.15	<0.15 <0.075	0.15	<0.15 <0.075	0.15	<0.15 <0.075	0.15	<0.15 <0.075	0.15 0.075	<0.10 <0.050	0.10	<0.15 <0.075	0.15	GFI tripped.
Benzo(k)fluoranthene		µg		< 0.075	0.075	<0.075	0.075	< 0.075	0.075	<0.075	0.075	<0.075	0.075	<0.050	0.050	<0.075	0.075	Sample did not run for sufficient time.
Biphenyl		μg		1.43	0.15	2.27	0.15	0.61	0.15	2.18	0.15	0.18	0.15	0.36	0.10	0.58	0.15	Sample
Chrysene		μg		< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	< 0.050	0.050	< 0.075	0.075	invalidated.
Dibenz(a,h)anthracene		μg		< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	< 0.075	0.075	<0.050	0.050	< 0.075	0.075	
Dibenzo(a,c) anthracene + Picene 1		μg		<0.10	0.10	<0.15	0.15	<0.15	0.15	<0.15	0.15	<0.15	0.15	<0.10	0.10	<0.15	0.15	
Fluoranthene		μg		0.552	0.075	0.930	0.075	0.237	0.075	0.564	0.075	< 0.075	0.075	0.114	0.050	0.126	0.075	
Indeno(1,2,3-cd)pyrene		μg		<0.075	0.075	<0.075	0.075	<0.075	0.075	<0.075	0.075	<0.075	0.075	<0.050	0.050	<0.075	0.075	
Naphthalene o-Terphenyl		hā hā		7.06 <0.15	0.11 0.15	13.1 <0.15	0.11 0.15	5.60 <0.15	0.11 0.15	24.1 <0.15	0.11 0.15	1.96 <0.15	0.11 0.15	4.66 <0.10	0.072 0.10	6.89 <0.15	0.11 0.15	
Perylene		μg		<0.15	0.15	<0.15	0.15	<0.15	0.15	<0.15	0.15	<0.15	0.15	<0.10	0.10	<0.15	0.15	
Phenanthrene		μg		3.74	0.075	6.33	0.075	1.26	0.075	3.27	0.075	0.240	0.075	0.476	0.050	0.432	0.075	
Pyrene		μg		0.273	0.075	0.399	0.075	0.129	0.075	0.288	0.075	< 0.075	0.075	0.074	0.050	0.087	0.075	
Tetralin		μg		0.37	0.15	0.80	0.15	0.38	0.15	1.66	0.15	0.25	0.15	0.80	0.10	1.01	0.15	
		Quarter 4	•		ndle 21		ndle	Rur	ndle	Rur	ndle		ndle	Rur	ndle	Ru	ndle	Rundle
									12		va .		NF		· /			
		1			41	2	2	2	23	2	4	2	25	2	26	:	27	28
Calculated Concentrations		l			21	2	2	2	23	2	.4	2	25	2	26	:	27	28
Calculated Concentrations	Units	Maximum	Minimum	,	21	2	2	2	23	2	14	2	25	2	26	:	27	28
				03/10	0/2016	15/10)/2016	27/10)/2016	08/11	/2016	20/11	/2016	02/12	2/2016	14/12	2/2016	26/12/2016
Benzo(a)pyrene	ng/m³	0.18	0.0057	03/10 3.01	0/2016 1E-02	15/10 4.66)/2016 E-02	27/10)/2016 DE-02	08/11 1.75	/ 2016 E-01	20/11 5.73	/ 2016 BE-03	02/12 1.41	2/ 2016 E-02	14/12 3.48	2/2016 BE-02	26/12/2016 N/A
Benzo(a)pyrene 1-Methylnaphthalene	ng/m³	0.18 1.43E+01	0.0057 8.95E-01	03/10 3.01 9.68	0/ 2016 1E-02 8E+00	15/10 4.66 1.43)/2016 bE-02 E+01	27/10 1.70 3.53	0/2016 0E-02 E+00	08/11 1.75 1.33	/2016 EE-01 E+01	20/11 5.73 8.95	/ 2016 BE-03 BE-01	02/12 1.41 2.60	2/ 2016 E-02 E+00	14/12 3.48 3.31	2/2016 BE-02 IE+00	26/12/2016 N/A N/A
Benzo(a)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	ng/m³ ng/m³ ng/m³	0.18 1.43E+01 2.73E+01	0.0057 8.95E-01 1.34E+00	03/10 3.01 9.68 1.92	0/2016 1E-02 BE+00 PE+01	15/10 4.66 1.43 2.73	0/2016 6E-02 E+01 E+01	27/10 1.70 3.53 5.58	0/2016 0E-02 E+00 E+00	08/11 1.75 1.33 2.22	/2016 EE-01 E+01 E+01	20/11 5.73 8.95 1.34	/2016 BE-03 BE-01 E+00	02/12 1.41 2.60 3.98	2/ 2016 E-02 E+00 E+00	14/12 3.48 3.31 4.98	2/2016 BE-02 E+00 BE+00	26/12/2016 N/A N/A N/A
Benzo(a)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene	ng/m³ ng/m³ ng/m³ ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01	0.0057 8.95E-01 1.34E+00 1.03E-01	03/10 3.01 9.68 1.92 1.17	0/2016 1E-02 8E+00 PE+01	15/10 4.66 1.43 2.73 1.52	1/2016 E-02 E+01 E+01 E+01	27/10 1.70 3.53 5.58 2.87	0/2016 DE-02 E+00 E+00 E+00	08/11 1.75 1.33 2.22 6.64	/2016 E-01 E+01 E+01 E+00	20/11 5.73 8.95 1.34 3.86	/2016 BE-03 GE-01 E+00 GE-01	02/12 1.41 2.60 3.98 5.53	E/2016 E-02 E+00 E+00	14/12 3.48 3.31 4.98 1.03	2/2016 BE-02 IE+00 BE+00 BE-01	26/12/2016 N/A N/A N/A N/A
Benzo(a)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02	03/10 3.01 9.68 1.92 1.17	0/2016 1E-02 3E+00 2E+01 7E+01 DE-01	15/10 4.66 1.43 2.73 1.52 1.03	0/2016 E-02 E+01 E+01 E+01	27/10 1.70 3.53 5.58 2.87 1.03	0/2016 0E-02 E+00 E+00 E+00	08/11 1.75 1.33 2.22 6.64 9.88	/2016 E-01 E+01 E+01 E+00	20/11 5.73 8.95 1.34 3.86 1.05	/2016 8E-03 6E-01 E+00 6E-01	02/12 1.41 2.60 3.98 5.53 6.77	E-02 E+00 E+00 E+00 E-01	14/12 3.44 3.31 4.98 1.00 2.11	2/2016 BE-02 IE+00 BE+00 BE-01 BE-01	26/12/2016 N/A N/A N/A N/A N/A
Benzo(a)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02	03/10 3.01 9.68 1.92 1.17 1.10 4.21	0/2016 0 E-02 0 E+00 0 E+01 0 E+01 0 E-01	15/10 4.66 1.43 2.73 1.52 1.03 1.03	N/2016 NE-02 E+01 E+01 E+01 SE-01	27/10 1.70 3.53 5.58 2.87 1.03	0/2016 0E-02 E+00 E+00 E+00 8E-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88	/2016 EE-01 EE+01 EE+01 EE+00 EE-02 EE-02	20/11 5.73 8.95 1.34 3.86 1.05	/2016 8E-03 6E-01 E+00 6E-01 6E-01	02/12 1.41 2.60 3.98 5.53 6.77 6.77	E/2016 E-02 E+00 E+00 E-01 E-02	14/12 3.44 3.31 4.98 1.00 2.11 1.00	2/2016 BE-02 IE+00 BE+00 BE-01 BE-01 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 6.77E-02	03/10 3.01 9.68 1.92 1.17 1.10 4.21	0/2016 IE-02 8E+00 PE+01 VE+01 DE-01 IE-01 DE-01	15/10 4.66 1.43 2.73 1.52 1.03 1.03	0/2016 0E-02 E+01 E+01 E+01 0E-01 0E-01	27/10 1.70 3.53 5.58 2.87 1.03 1.03	0/2016 0E-02 E+00 E+00 E+00 BE-01 BE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 9.88	/2016 EE-01 E+01 E+01 E+00 EE-02 EE-02	20/11 5.73 8.95 1.34 3.86 1.05 1.05	/2016 BE-03 BE-01 E+00 BE-01 BE-01 BE-01	02/12 1.41 2.60 3.98 5.53 6.77 6.77	E/2016 E-02 E+00 E+00 E-01 E-02 E-02	14/12 3.44 3.31 4.98 1.03 2.11 1.03	2/2016 BE-02 IE+00 BE+00 BE-01 BE-01 BE-01 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A
Benzo(a)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)fluorene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01	03/10 3.01 9.68 1.92 1.17 1.10 4.21 1.10 2.15	0/2016 IE-02 8E+00 PE+01 PE+01 DE-01 IE-01 DE-01 DE-01	15/10 4.66 1.43 2.73 1.52 1.03 1.03 2.05	0/2016 E-02 E+01 E+01 E+01 E-01 E-01 E-01	27/10 1.70 3.53 5.58 2.87 1.03 1.03 2.05	0/2016 DE-02 E+00 E+00 E+00 E+00 SE-01 SE-01 SE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 9.88 1.98	/2016 E-01 E+01 E+01 E+00 E-02 E-02 E-02 E-02	20/11 5.73 8.95 1.34 3.86 1.05 1.05 2.10	/2016 8E-03 8E-01 E+00 8E-01 8E-01 8E-01 8E-01	02/12 1.41 2.60 3.98 5.53 6.77 6.77 6.77	E/2016 E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-02	14/12 3.46 3.31 4.98 1.00 2.11 1.00 1.00 2.06	2/2016 BE-02 EE+00 BE+00 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(a)fluorene Benzo(b)fluoranthene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01 6.77E-02	03/10 3.01 9.68 1.92 1.17 1.10 4.21 1.10 2.19	0/2016 IE-02 IE-00 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01	15/10 4.66 1.43 2.73 1.52 1.03 1.03 2.05	7/2016 IE-02 E+01 E+01 E+01 IE-01 IE-01 IE-01 IE-01	27/10 1.70 3.53 5.58 2.87 1.03 1.03 2.05 1.03	3/2016 DE-02 E+00 E+00 E+00 SE-01 SE-01 SE-01 SE-01 SE-01	08/11 1.75 1.33 2.22 6.64 9.86 9.86 9.88 1.96 9.88	/2016 IE-01 E+01 E+01 E+00 IE-02 IE-02 IE-02 IE-01 IE-02	20/11 5.73 8.95 1.34 3.86 1.05 1.05 2.10	/2016 SE-03 SE-01 E+00 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01	02/12 1.41 2.60 3.98 5.53 6.77 6.77 6.77 1.35	E-02 E+00 E+00 E+00 E-01 E-02 E-02 E-02 E-02 E-02 E-02	14/12 3.44 3.33 4.98 1.03 2.13 1.03 2.04 1.03	2/2016 BE-02 IE+00 BE+00 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/A N/A
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(a) fluorene Benzo(b) fluoranthene Benzo(b) fluorene	ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³ ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01 6.77E-02 1.35E-01	03/10 3.01 9.68 1.922 1.17 1.10 4.21 1.10 2.19	0/2016 IE-02 IE-00 IE-01 IE-01 DE-01 DE-01 DE-01 DE-01 DE-01	15/10 4.66 1.43 2.73 1.52 1.03 1.03 2.05 1.03 2.05	7/2016 E-02 E+01 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01	27/10 1.70 3.53 5.588 2.87 1.03 1.03 2.05 1.03 2.05 2.05	5/2016 DE-02 E+00 E+00 E+00 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 9.88 1.98 9.88	/2016 EE-01 EE+01 EE+01 EE-02 EE-02 EE-02 EE-02 EE-02 EE-02 EE-01	20/11 5.73 8.95 1.34 3.86 1.05 1.05 2.10 1.05 2.11 2.11	/2016 SE-03 SE-01 E-00 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01	02/12 1.41 2.60 3.989 5.53 6.77 6.77 1.35 6.777	2/2016 E-02 E+00 E+00 E+00 E-02 E-02 E-02 E-02 E-02 E-01 E-02	14/12 3.44 3.31 4.98 1.00 2.11 1.00 1.00 2.00 1.00 2.00	2/2016 BE-02 IE+00 SE+00 SE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(a) fluorene Benzo(b) fluoranthene Benzo(b) fluorene Benzo(b) pyrene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01 1.35E-01 1.35E-01	03/10 3.01 9.68 1.92 1.17 1.10 4.21 1.10 2.11 2.11 2.11	0/2016 IE-02 8E+00 9E+01 IE-01 DE-01 IE-01 DE-01 DE-01 DE-01 DE-01 DE-01	15/10 4.666 1.43 2.73 1.52 1.03 1.03 2.055 1.03 2.055 2.055	7/2016 E-02 E+01 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	27/10 1.70 3.53 5.58 2.87 1.03 1.03 2.05 1.03 2.05 2.05 2.05	5/2016 5/2016 5/202 5/202 5/200 5/201	08/11 1.75 1.33 2.22 6.64 9.88 9.88 9.88 1.99 1.98	/2016 EE-01 EE+01 EE+01 EE-02 EE-02 EE-02 EE-02 EE-01 EE-02 EE-01 EE-01	20/11 5.73 8.98 1.34 3.86 1.05 1.05 2.10 2.10 2.10 2.10	/2016 SE-03 SE-01 E-00 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01	02/12 1.41 2.60 3.98 5.53 6.77 6.77 1.355 6.77 1.355	2/2016 E-02 E+00 E+00 E+00 E-02 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-01	14/12 3.44 3.31 4.98 1.00 2.11 1.00 2.00 1.00 2.00 2.00	2/2016 3E-02 1E+00 3E+00 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 5E-01 5E-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/A
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(b) fluorene Benzo(b) fluorene Benzo(b) pyrene Benzo(g), h) perylene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01 6.77E-02 1.35E-01 1.35E-01 6.77E-02	03/10 3.01 9.68 1.922 1.17 1.10 4.21 1.10 2.15 1.11 2.15 1.11	0/2016 IE-02 SE+00 PE+01 PE-01 IE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01	15/10 4.666 1.43 2.73 1.52 1.03 1.03 2.05 1.03 2.05 2.05 2.05	7/2016 IE-02 E+01 E+01 E+01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01	27/10 1.77 3.53 5.58 2.87 1.03 1.03 2.05 1.03 2.05 2.05 2.05	0/2016 DE-02 E+00 E+00 E+00 E+00 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 9.88 1.98 9.88 1.98 9.88	/2016 IE-01 E+01 E+01 E+00 IE-02 IE-02 IE-02 IE-01 IE-01 IE-01 IE-01	20/11 5.77 8.98 1.34 3.86 1.05 1.05 2.10 1.05 2.11 2.11 1.10 2.11	/2016 iE-03 iE-01	02/12 1.41 2.60 3.98 5.53 6.77 6.77 1.35 6.777 1.35	2/2016 E-02 E+00 E+00 iE-01 iE-02 iE-02 iE-02 iE-01 iE-02 iE-01 iE-02	14/12 3.44 3.31 4.98 1.00 2.11 1.00 2.00 1.00 2.00 2.00 2.00	2/2016 3E-02 1E+00 3E+00 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/A
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluorene Benzo(b) fluorene Benzo(e) pyrene Benzo(e) pyrene Benzo(k) fluoranthene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01 6.77E-02 1.35E-01 1.35E-01 6.77E-02	03/10 3.01 9.68 1.92 1.17 1.10 4.21 1.10 2.15 2.15 1.10 1.10 1.10	0/2016 IE-02 IE+00 IE+01 IE-01 I	15/10 4.66 1.43 2.73 1.52 1.03 2.05 1.03 2.05 2.05 1.03 1.03	//2016 E-02 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	27/10 1.70 3.53 5.58 2.87 1.03 1.03 2.05 1.03 2.05 2.05 1.03	7/2016 DE-02 E+00 E+00 E+00 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 1.99 9.88 1.98 1.98 9.88	/2016 iE-01 E+01 E+01 iE-02 iE-02 iE-02 iE-01 iE-02 iE-01 iE-02 iE-01 iE-02	20/11 5.73 8.99 1.34 3.86 1.05 1.05 2.10 1.05 2.11 2.11 1.05 2.11 1.05	/2016 6E-03 6E-01 6E-01 6E-01 6E-01 6E-01 6E-01 6E-01 6E-01 6E-01 6E-01	02/12 1.41 2.60 3.98 5.53 6.77 6.77 1.35 6.77 1.35 6.77 1.35	2/2016 E-02 E+00 E+00 E-01 E-02 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02	14/12 3.44 3.33 4.98 1.00 2.11: 1.00 2.00 1.00 2.00 2.00 1.00	2/2016 BE-02 IE+00 BE+00 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/A
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(a) fluorene Benzo(b) fluoranthene Benzo(e) pyrene Benzo(e) pyrene Benzo(g, h,i) perylene Benzo(g, fluoranthene Biphenyl	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 6.22E+00	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 6.77E-02 1.35E-01 1.35E-01 6.77E-02 5.03E-01	03/10 3.01 9.68 1.92 1.17 1.10 4.21 1.10 2.19 2.19 1.11 4.18	0/2016 IE-02 IE+00 IE+01 IE-01 I	15/10 4.66 1.43 2.73 1.52 1.03 1.03 2.05 2.05 2.05 1.03 2.05 2.05 1.03	//2016 -E-02 E+01 E+01 E+01 -E-01 -E-01 -E-01 -E-01 -E-01 -E-01 -E-01 -E-01 -E-01 -E-01 -E-01 -E-01 -E-01 -E-01	27/10 1.70 3.53 5.58 2.87 1.03 1.03 2.05 2.05 2.05 1.03 1.03	7/2016 DE-02 E+00 E+00 E+00 E+00 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 1.98 1.98 1.98 9.88 1.98 9.88	/2016 E-01 E+01 E+01 E+00 E-02 E-02 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	20/11 5.73 8.95 1.34 3.86 1.05 1.05 2.10 2.10 2.11 1.05 2.10 2.10 5.03	/2016 0E-03 0E-01 0E-01 0E-01 0E-01 0E-01 0E-01 0E-01 0E-01 0E-01 0E-01	02/12 1.41 2.60 3.989 5.53 6.777 6.77 1.355 6.777 1.355 6.777 6.777 9.75	E-02 E+00 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-01	14/12 3.44 3.31 4.99 1.00 2.11 1.00 1.00 2.00 2.00 2.00 1.00 1	2/2016 BE-02 IE+00 IE+00 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/A
Benzo(a)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,hi)perylene Benzo(k)fluoranthene Biphenyl Chrysene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01 6.77E-02 1.35E-01 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02	03/10 3.01 9.68 1.92 1.17 1.10 4.21 1.10 2.19 2.19 2.11 1.10 4.18 4.18	0/2016 DE-02 EE+00 EE+01 EE+01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01 DE-01	15/10 4.66 1.43 2.73 1.52 1.03 2.05 1.03 2.05 2.05 2.05 1.03 6.22 1.03	//2016 IE-02 E+01 E+01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01	27/10 1.77 3.53 5.58 2.87 1.03 1.03 2.05 1.03 2.05 2.05 1.03 1.03 1.03	D/2016 DE-02 E+00 E+00 E+00 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 1.98 1.98 9.88 9.88 5.74 9.88	/2016 E-01 E+01 E+00 E-02 E-02 E-02 E-02 E-01 E-01 E-01 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02	20/11 5.73 8.95 1.34 1.05 1.05 2.10 2.11 1.05 2.11 1.05 5.03	/2016 SE-03 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01	02/12 1.41 2.60 3.98 5.53 6.77 6.77 1.35 6.777 6.777 9.757 6.777	E-02 E+00 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02	14/12 3.44 3.33 4.98 1.00 2.11 1.00 2.00 2.00 2.00 1.00 1.00	2/2016 3E-02 E+00 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01 3E-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/A
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(b) fluorane Benzo(b) fluoranthene Benzo(g), h) perylene Benzo(k) fluoranthene Biphenyl Chrysene Dibenz(a,h) anthracene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 6.22E+00 1.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01 6.77E-02 1.35E-01 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02	03/10 3.01 9.68 1.922 1.177 1.10 4.21 1.10 2.15 1.10 4.18 1.10 4.18	0/2016 IE-02 IE-02 IE-01 I	15/10 4.666 1.433 2.73 1.52 1.03 1.03 2.055 1.03 2.055 2.055 1.03 1.03 6.22 1.03 1.03	//2016 IE-02 E+01 E+01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01	27/10 1.70 3.53 5.58 2.87 1.03 1.03 2.05 1.03 2.05 2.05 2.05 1.03 1.03	7/2016 DE-02 E+00 E+00 E+00 DE-01 DE-0	08/11 1.75 1.33 2.22 6.64 9.88 9.88 1.98 9.88 1.98 9.88 5.74 9.88 9.88	/2016 iE-01 E+01 E+01 E+00 iE-02 iE-02 iE-02 iE-01 iE-01 iE-01 iE-01 iE-01 iE-02 iE-01 iE-02 iE-01	20/11 5.73 8.95 1.34 3.86 1.05 1.05 2.11 2.11 2.11 2.11 1.05 5.03 1.05	/2016 IE-03 IE-01	02/12 1.41 2.60 3.98 5.53 6.77 6.77 1.35 6.77 1.35 6.77 9.75 6.77	E-02 E-00 E-00 E-00 E-01 E-02 E-02 E-02 E-01 E-01 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-02 E-01 E-02	14/11/3 3.44/3 3.33/3 4.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	2/2016 8E-02 IE+00 8E+00 8E-01 8	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluorene Benzo(b) fluorene Benzo(e) pyrene Benzo(k) fluoranthene Benzo(k) fluoranthene Benzo(k) fluoranthene Benzo(c) pyrene Benzo(k) fluoranthene Biphenyl Chrysene Dibenz(a,h) anthracene Dibenzo(a,c) anthracene + Picene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 2.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 6.77E-02 1.35E-01 6.77E-02 1.35E-01 6.77E-02 5.03E-01 6.77E-02 5.03E-01 6.77E-02	03/10 3.01 9.68 1.922 1.177 1.104 4.21 1.105 2.119 1.106 4.18 1.106 1.106 1.106 1.106	0/2016 IE-02 IE-02 IE-01	15/10 4.66 1.43 2.73 1.52 1.03 1.03 2.05 1.03 2.05 2.05 2.05 2.05 2.05 2.05 3.03 1.03 1.03 1.03 1.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2	1/2016 1E-02 E+01 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	27/10 1.77 3.53 5.58 2.87 1.03 1.03 2.06 2.06 1.03 1.03 1.03 1.03 1.03 1.03 1.03	1/2016 1E-02 E+00 E+00 E+00 E+00 E+01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 9.88 1.98 1.98 1.98 9.88 9.88	/2016 IE-01 E+01 E+01 E+00 IE-02 IE-02 IE-02 IE-02 IE-01 IE-02 IE-01 IE-02 IE-01 IE-02 IE-01 IE-02 IE-01 IE-02 IE-01	20/11 5.73 8.95 1.344 3.86 1.05 1.05 2.10 2.10 2.10 2.10 5.03 1.05 5.03	/2016 IE-03 IE-03 IE-01	02/12 1.41 2.60 3.98 5.53 6.77 6.77 6.77 1.35 6.77 1.35 6.77 6.77 6.77 7 6.77 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	2/2016 E-02 E+00 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01	14/12 3.44 3.31 4.99 1.00 2.11 1.00 2.00 1.00 2.00 1.00 1.00	2/2016 BE-02 IE+00 BE+00 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluorene Benzo(b) fluorene Benzo(b) fluorene Benzo(e) pyrene Benzo(g), h.i) perylene Benzo(k) fluoranthene Biphenyl Chysene Dibenz(a,h) anthracene Dibenz(a,c) anthracene + Picene Fluoranthene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 2.19E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 6.77E-02 1.35E-01 1.35E-01 1.35E-01 6.77E-02 6.77E-02 6.77E-02 6.77E-02 1.35E-01 6.77E-02 6.77E-02	03/10 3.01 9.68 1.929 1.177 1.116 4.21 1.110 2.15 1.110 4.18 1.110 4.18 1.110 1.110 1.140	0/2016 IE-02 IE-00 IE-01 I	15/10 4.66 1.43 2.73 1.52 1.03 1.03 2.05 2.05 2.05 1.03 1.03 6.22 1.03 1.03 2.05 2.05	1/2016 1E-02 E+01 E+01 E+01 1E-01	27/10 1.77 3.53 5.58 2.87 1.03 1.03 2.05 1.03 2.05 1.03 1.03 1.03 1.03 1.03 1.03 1.03 6.64	7/2016 DE-02 E+00 E+00 E+00 E+00 EE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01 SE-01	08/11 1.77 1.33 2.22 6.64 9.88 9.88 9.88 1.99 9.88 9.88 9.88 9.88	/2016 E-01 E+01 E+00 E-02 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-02	20/11 5.73 8.95 1.344 3.86 1.05 1.05 2.10 1.05 2.10 1.05 5.03 1.05 1.05 1.05 1.05	/2016 SE-03 SE-03 SE-01	02/12 1.41 2.60 3.989 5.53 6.777 6.777 1.355 6.777 6.777 9.75 6.777 6.777 1.353	2/2016 E-02 E+00 EE+00 EE+01 EE-02 EE-02 EE-01 EE-02 EE-01 EE-02 E	14/12 3.44 3.31 4.99 1.00 2.11 1.00 2.00 1.00 2.00 1.00 1.00	2/2016 8E-02 IE+00 8E-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) fluorene Benzo(b) fluoranthene Benzo(b) fluorene Benzo(b) fluorene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(c) pyrene Benzo(d), i) perylene Benzo(k) fluoranthene Biphenyl Chrysene Dibenz(a, h) anthracene Dibenzo(a, c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd) pyrene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 6.77E-02 1.35E-01 1.35E-01 1.35E-01 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02	03/10 3.01 9.68 1.922 1.17 1.10 4.22 1.11 2.15 1.10 4.18 4.18 1.10 1.11 1.10 1.11 1.14 1.16	0/2016 IE-02 IE-02 IE-01 IE-01 DE-01	15/10 4.666 1.43 2.73 1.52 1.03 1.03 2.055 2.055 2.055 1.03 1.03 1.03 2.050 2.055 2.	7/2016 E-02 E+01 E+01 E+01 E-01 EE-01	27/10 1.77 3.535 5.58 2.87 1.03 1.03 2.09 1.03 2.09 1.03 1.03 1.03 1.03 1.03 2.09 6.44 1.03	7/2016 DE-02 E+00 E+00 E+00 E+00 BE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 1.99 9.88 1.99 9.88 9.88 9.88	/2016 E-01 E+01 E+01 E+00 E-02 E-02 E-02 E-01 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-02 E-01 E-01 E-02 E-02 E-01 E-02 E-01 E-02 E-02 E-03	20/11 5.73 8.959 1.34 3.86 1.05 1.05 2.10 1.05 2.10 1.05 5.00 1.05 5.00 1.05 1.05 1.05 1	/2016 IE-03 IE-03 IE-01 IE-00 IE-01	02/12 1.41 2.600 3.98 5.53 6.77 6.77 1.35 6.77 1.35 6.77 6.77 6.77 6.77 6.77 6.77	7/2016 E-02 E+00 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	14/1; 3.44/3; 3.31/4.98 1.00 2.11; 1.00 2.00 1.00 2.00 1.00 1.00 1.00 1.00	2/2016 BE-02 EE+00 BE+00 BE+01 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(b) fluorene Benzo(b) fluorene Benzo(c) pyrene Benzo(k) fluoranthene Biphenyl Chysene Dibenz(a,h) anthracene Dibenz(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd) pyrene Naphthalene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 1.10E-01 1.10E-01 2.19E-01 1.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01 6.77E-02 1.35E-01 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 1.35E-01 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 1.35E-01 6.77E-02 5.03E-01 6.77E-02 5.03E-01	03/10 3.01 9.68 1.922 1.177 1.10 2.15 1.10 2.15 1.10 1.10 4.18 1.10 1.44 1.61 1.10 1.44 1.61	0/2016 IE-02 IE-02 IE-01	15/10 4.666 1.433 2.73 1.52 1.033 2.055 1.033 2.055 2.055 2.055 2.050 2.050 2.050 2.050 2.050 3.030 2.050 3.030 3.	1/2016 1E-02 1E-01	27/10 1.77 3.53 5.58 2.87 1.03 1.03 2.05 1.03 2.05 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	1/2016 1E-02 1E-00 1E-00 1E-00 1E-00 1E-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 1.98 9.88 1.98 9.88 5.74 9.88 9.88 9.88 9.88 9.88	/2016 IE-01 E+01 E+01 E+00 IE-02 IE-02 IE-02 IE-01 IE-01 IE-01 IE-01 IE-02 IE-01 IE-01 IE-02 IE-01 IE-02 IE-02 IE-01 IE-02 IE-01 IE-02 IE-02 IE-01	20/11 5.77 8.95 1.344 3.86 1.05 1.05 2.11 1.05 2.11 2.11 1.05 1.05 5.03 1.05 2.11 1.05 1.05 5.03	/2016 IE-03 IE-03 IE-01 E+00 IE-01 I	02/12 1.41 2.60 3.98 5.53 6.77 6.777 1.35 6.777 1.35 6.777 9.75 6.777 1.353 3.09 6.777 1.26	E-02 E+00 E+00 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-02 E-01 E-02 E-02 E-02 E-02 E-03 E-01 E-02 E-02 E-03 E-01 E-02 E-03 E-01 E-02 E-03 E-01 E-02 E-03 E-01 E-02 E-03 E-01 E-03 E-01 E-02 E-03 E-04 E-04 E-04 E-04 E-04 E-05 E-04 E-05 E-05 E-06 E-06 E-07 E-08 E-08 E-09 E-09 E-09 E-09 E-09 E-09 E-09 E-09	14/11/3 3.44 3.331 4.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	2/2016 8E-02 IE-00 8E-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluoranthene Benzo(b) fluorene Benzo(b) pyrene Benzo(e) pyrene Benzo(k) fluoranthene Biphenyl Chrysene Dibenz(a,h) anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd) pyrene Naphthalene o-Terphenyl	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 2.10E-01 1.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01 2.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 6.77E-02 1.35E-01 6.77E-02 1.35E-01 1.35E-01 6.77E-02 5.03E-01 6.77E-02 5.03E-01 1.05E-01 1.05E-01 1.05E-01 1.05E-01	03/10 3.01 9.68 1.929 1.177 1.10 4.21 1.10 2.15 2.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1	0/2016 IE-02 IE-02 IE-01	15/10 4.66 1.43 2.73 1.52 1.03 2.05 1.03 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05	1/2016 1E-02 E+01 E+01 E+01 E-01 1E-01	27/10 1.77 3.53 5.58 2.87 1.03 1.03 2.05 2.05 2.05 1.03 1.03 1.03 2.05 4.04 1.03 2.05 6.44 1.03 1.03	1/2016 1E-02 E+00 E+00 E+00 E+00 E+00 E-01 EE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 1.98 1.98 1.98 9.88 5.74 9.88 9.88 1.98 9.88 6.45 1.98	/2016 IE-01 E+01 E+01 E+00 IE-02 IE-02 IE-02 IE-02 IE-01 IE-02	20/11 5.73 8.95 1.344 3.86 1.05 1.05 2.10 2.10 2.10 2.10 5.03 1.05 5.03 1.05 2.10 5.03 1.05 5.03	/2016 IE-03 IE-03 IE-03 IE-01	02/12 1.41 2.60 3.98 5.53 6.77 6.777 1.35 6.77 1.35 6.77 1.35 6.77 7.75 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35	E-02 E+00 E+00 E+00 E+00 E-01 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-02 E-01 E-02 E-02 E-02 E-01 E-02 E-02 E-01 E-02 E-02 E-03 E-04 E-03 E-04 E-04 E-04 E-04 E-04 E-04 E-04 E-04	14/12 3.44 3.31 4.99 1.00 2.11 1.00 2.00 2.00 1.00 1.00 1.00	2/2016 BE-02 IE+00 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(b) fluorene Benzo(c) h) i) perylene Benzo(c) h) i) perylene Biphenyl Chrysene Dibenzo(a,c) anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd) pyrene Naphthalene o-Terphenyl Perylene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.0E-01 2.55E+00 1.10E-01 2.55E+00 1.25E+00 1.25E+00 1.25E+01 2.19E-01 2.19E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01 6.77E-02 1.35E-01 1.35E-01 6.77E-02 5.03E-01 6.77E-02 5.03E-01 6.77E-02 5.03E-01 1.05E-01 6.77E-02 1.35E-01	03/10 3.01 9.68 1.92 1.17 1.10 4.21 1.10 2.19 1.11 4.18 1.11 1.10 4.18 1.10 1.14 1.44 1.61 1.10 2.06 2.19	0/2016 IE-02 IE-02 IE-03 IE-01	15/10 4.66 1.43 2.73 1.52 1.03 1.03 2.05 1.03 2.05 2.05 1.03 2.05 2.05 1.03 3.59 2.05 2.05 2.05 2.05 2.05	1/2016 1E-02 E+01 E+01 E+01 E-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01 EE-01	27/10 1.77 3.53 5.58 2.87 1.03 1.03 2.05 2.05 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	1/2016 1E-02 E+00 E+00 E+00 E+00 E+01 EE-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 9.88 1.98 1.98 9.88 9.88 9.88	/2016 IE-01 E+01 E+01 E+00 IE-02 IE-02 IE-02 IE-02 IE-01 IE-01 IE-02 IE-01 IE-02 IE-01 IE-01 IE-02 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01 IE-01	20/11 5.73 8.95 1.344 3.86 1.05 1.05 2.10 2.10 2.10 2.10 5.03 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	/2016 IE-03 IE-03 IE-01	02/12 1.41 2.60 3.989 5.53 6.77 6.77 6.77 1.35 6.77 1.35 6.77 6.77 6.77 9.75 6.77 6.77 6.77 1.35 3.09 6.77 1.26 1.355 1.355	2/2016 E-02 E+00 E+00 E+00 E-01 E-02 E-02 E-02 E-01 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-02 E-01 E-02 E-02 E-02 E-01 E-02 E-02 E-01 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-01 E-02 E-02 E-01 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	14/12 3.44 3.31 4.99 1.00 2.11 1.00 2.00 2.00 1.00 1.00 1.00	2/2016 8E-02 IE+00 8E+00 8E-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Acenaphthylene Benzo(a) fluorene Benzo(b) fluoranthene Benzo(a, h) perylene Benzo(a, h) perylene Benzo(b, fluoranthene Biphenyl Chrysene Dibenz(a, h) anthracene Dibenzo(a, c) anthracene + Picene Fluoranthene Indeno(1, 2, 3-cd) pyrene Naphthalene o-Terphenyl Perylene Phenanthrene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 6.22E+00 1.10E-01 2.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 6.77E-02 1.35E-01 1.35E-01 1.35E-01 6.77E-02 5.03E-01 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.78E-01 1.05E-01 6.77E-02 5.48E+00 1.35E-01 6.71E-01	03/10 3.01 9.68 1.922 1.17 1.10 4.221 1.10 2.15 1.11 1.10 4.18 1.10 1.11 1.10 1.11 1.10 2.06 2.15 2.15 1.11	0/2016 IE-02 IE-02 IE-01	15/10 4.666 1.43 2.73 1.52 1.03 1.03 2.05 2.05 2.05 1.03 1.03 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05	7/2016 E-02 E+01 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	27/10 1.77 3.53 5.58 2.87 1.03 1.03 2.06 2.06 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	1/2016 DE-02 E+00 E+00 E+00 E+00 E+00 BE-01	08/11 1.75 1.33 2.22 6.644 9.88 9.88 1.99 9.88 1.99 9.88 9.88 9.88	/2016 E-01 E+01 E+01 E+00 E-02 E-02 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	20/11 5.73 8.959 1.34 3.86 1.05 1.05 2.16 1.05 2.16 1.05 5.03 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	/2016 IE-03 IE-03 IE-01 IE-00 IE-01	02/12 1.41 2.600 3.98 5.53 6.77 6.777 1.355 6.777 6.777 6.777 9.7576 6.777 6.777 6.777 6.777 1.353 6.777 6.777 6.777 1.353 1.355	2/2016 E-02 E+00 E+00 E+00 E+00 E-01 E-02 E-02 E-02 E-02 E-01 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	14/1: 3.44/3: 3.31/4.98 1.00 2.11: 1.00 2.00 1.00 2.00 1.	2/2016 BE-02 BE-02 BE-00 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/
Benzo(a) pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benzo(a) anthracene Benzo(a) fluorene Benzo(b) fluoranthene Benzo(b) fluorene Benzo(b) fluorene Benzo(c) pyrene Benzo(c) pyrene Benzo(c), i) perylene Benzo(c), i) perylene Benzo(c), i) perylene Benzo(c), i) perylene Benzo(c), i) anthracene Dibenz(a, h) anthracene Dibenzo(a, c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd) pyrene Naphthalene o-Terphenyl Perylene Phenanthrene Pyrene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 1.10E-01 1.10E-01 2.19E-01 1.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 1.35E-01 6.77E-02 1.35E-01 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 1.35E-01 1.05E-01 1.05E-01 1.35E-01	03/10 3.01 9.68 1.922 1.177 1.10 4.21 1.10 2.15 2.15 1.10 1.10 1.10 1.10 1.44 1.61 1.11 2.06 2.15 2.15 1.10 1.1	0/2016 IE-02 IE-02 IE-01	15/10 4.666 1.43 2.73 1.52 1.03 1.03 2.05 1.03 2.05 1.03 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05	1/2016 1E-02 1E-01	27/10 1.77 3.53 5.58 2.87 1.03 1.03 2.06 1.03 2.06 1.03 1.03 2.06 1.03 1.03 2.06 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	1/2016 1E-02 E+00 E+00 E+00 E+00 E+00 E+01 E-01	08/11 1.75 1.33 2.22 6.64 9.88 9.88 1.98 9.88 1.99 9.88 5.74 9.88 9.88 1.99 1.49 9.88 6.35 1.99 8.63 1.99	/2016 IE-01 E+01 E+01 E+00 IE-02 IE-02 IE-02 IE-01 IE-01 IE-02 IE-01 IE-01 IE-02 IE-01 IE-02 IE-01 IE-02 IE-01 IE-02 IE-01 IE-01 IE-02 IE-01 IE-01 IE-02 IE-01 IE-01 IE-02 IE-01 IE-	20/11 5.73 8.95 1.34 3.86 1.05 1.05 2.11 2.11 2.11 1.05 1.05 2.11 2.11 2.11 2.11 2.11 2.11 2.11 2.1	/2016 IE-03 IE-03 IE-01 E+00 IE-01	02/12 1.41 2.60 3.98 5.53 6.77 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	E-02 E+00 E+00 E+00 E+01 E-02 E-02 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	14/11/3 3.44/3 3.33/3 4.98/9 1.00/2.11/1 1.00/1 2.00/1 2.00/1 1.0	2/2016 8E-02 IE+00 8E+01 8E-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/
Benzo(a)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthylene Anthracene Benzo(a)fluorene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(c)hjloerylene Benzo(c)hjloerylene Benzo(c)hjloerylene Benzo(c)hjloerylene Benzo(c)hjloerylene Benzo(c)hjloerylene Benzo(c)hjloerylene Benzo(c)hjloerylene Benzo(c)hjloerylene Bibenz(a,h)anthracene Dibenzo(a,c) anthracene + Picene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene o-Terphenyl Perylene Phenanthrene	ng/m³	0.18 1.43E+01 2.73E+01 1.52E+01 2.13E-01 4.21E-01 1.10E-01 2.19E-01 1.10E-01 2.19E-01 1.10E-01 1.10E-01 1.10E-01 6.22E+00 1.10E-01 2.10E-01	0.0057 8.95E-01 1.34E+00 1.03E-01 6.77E-02 6.77E-02 6.77E-02 1.35E-01 1.35E-01 1.35E-01 6.77E-02 5.03E-01 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.77E-02 6.78E-01 1.05E-01 6.77E-02 5.48E+00 1.35E-01 6.71E-01	03/10 3.01 9.68 1.929 1.177 1.10 4.21 1.10 2.15 2.15 1.10 1.10 1.10 1.10 2.06 2.15 2.15 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1	0/2016 IE-02 IE-02 IE-01	15/10 4.66 1.43 2.73 1.52 1.03 1.03 2.05 1.03 2.05 2.05 2.05 1.03 2.05 2.05 2.05 1.03 3.599 2.05 2.05 2.05 1.73	7/2016 E-02 E+01 E+01 E+01 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-	27/10 1.77 3.53 5.58 2.87 1.03 1.03 2.05 2.05 1.03 1.03 1.03 2.05 6.49 1.03 2.05 6.49 1.03 2.05 6.49 1.03 2.05 6.49 1.03	1/2016 DE-02 E+00 E+00 E+00 E+00 E+00 BE-01	98/11 1.75 1.33 2.22 6.64 9.88 9.88 1.98 1.98 9.88 5.74 9.88 9.88 1.99 1.49 9.88 1.98 1.99 8.6.35 1.98	/2016 E-01 E+01 E+01 E+00 E-02 E-02 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	20/11 5.73 8.95 1.344 3.86 1.05 1.05 2.10 2.10 2.10 1.05 5.03 1.05 2.10 1.05 5.03 1.05 2.10 1.05	/2016 IE-03 IE-03 IE-01 IE-00 IE-01	02/12 1.41 2.60 3.98 5.53 6.77 6.777 1.35 6.777 1.35 6.777 1.35 6.777 1.35 1.355 1.355 1.355 1.355 1.355 1.355 1.355 1.355 1.29 2.000	2/2016 E-02 E+00 E+00 E+00 E+00 E-01 E-02 E-02 E-02 E-02 E-01 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-02 E-01 E-01 E-02 E-01 E-01 E-01 E-01 E-01 E-01 E-01 E-01	14/12 3.44 3.331 4.99 1.00 2.11 1.00 2.00 2.00 1.00 1.00 1.00	2/2016 BE-02 BE-02 BE-00 BE-01	26/12/2016 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/

QUARTERLY AMBIENT AIR QUALITY MONITORING REPORT FOR THE DURHAM YORK ENERGY CENTRE – OCTOBER TO DECEMBER 2016

Appendix I Dioxins and Furans Data Summary February 8, 2017

Appendix I DIOXINS AND FURANS DATA SUMMARY

Project No.: 160950528

Dioxins and Furans	Courtice WPCP Station																		
Location			Courtic			Courtic			Courtic			Courtic			Courtic			Courtic	
Date	dd/mm/yyyy		3/10/20	116		15/10/20	016		27/10/20	016		8/11/20			20/11/2	016		14/12/20	
Start Time	hh:mm		0:00			0:00			0:00			0:00			0:00			0:00	
Sample Duration	hours		22.76	1		24.1			23.5			24.07	7		24.15			22.86	1
Technician			TH			TH			TH			KM			TH			TH	
Filter Number			CXB828			DAQ811-	01 ²		DAR654	-01		DAR743	-01 ²		DGG896	-01		DGH052	-01
Maxaam ID			DER85			DGO78			DIZ235			DKT74			DMN6			DQP47	
Maxxam Job #			B6L466	6		B6M412	21		B6N569	90		B6O49	47		B6P416	6		B6R553	37
Total Volumetric Flow	Am ³ /sample		341.29	9		380.29)		364.38	3		371.2	3		376.40)		358.04	4
		Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF
Analytical Results	Units	Value		W11O2005 1EF	value	EDL	WIIO 2005 TEF	value		WIIO2005 IEF	value	EDE	WIIO2005 TEF	value		WIIO2005 IEF	value	EDL	W11O2005 TEF
2,3,7,8-Tetra CDD *	pg	<3.4	3.4	1	<3.8	3.8	1	<3.7	3.7	1	<3.2	3.2	1	<3.2	3.2	1	<3.8	3.8	1
1,2,3,7,8-Penta CDD *	pg	<3.4	3.4	1	<2.5	2.5	1	<3.5	3.5	1	<4.8	4.8	1	<3.3	3.3	1	<3.6	3.6	1
1,2,3,4,7,8-Hexa CDD *	pg	<2.8	2.8	0.1	<4.1	4.1	0.1	<3.4	3.4	0.1	<2.8	2.8	0.1	<3.2	3.2	0.1	<3.3	3.3	0.1
1,2,3,6,7,8-Hexa CDD *	pg	<2.9	2.9	0.1	<4.2	4.2	0.1	<3.4	3.4	0.1	3.9	2.8	0.1	<3.3	3.3	0.1	<3.5	3.5	0.1
1,2,3,7,8,9-Hexa CDD *	pg	<2.6	2.6	0.1	<3.9	3.9	0.1	<3.1	3.1	0.1	7.0	2.6	0.1	<3.0	3.0	0.1	4.7	3.1	0.1
1,2,3,4,6,7,8-Hepta CDD *	pg	10.0	3.5	0.01	10.9	2.6	0.01	<22 (1)	22	0.01	59.2	3.2	0.01	5.2	3.3	0.01	26.4	2.7	0.01
Octa CDD *	pg	75.5	3.1	0.0003	69.9	3.7	0.0003	96.5	3.3	0.0003	198	3.8	0.0003	14.3	3.2	0.0003	87.3	4.1	0.0003
Total Tetra CDD *	pg	<5.1 (1)	5.1		<6.7 (1)	6.7		<12 (1)	12		<4.3 (1)	4.3		<4.3 (1)	4.3		<3.8	3.8	
Total Penta CDD *	pg	<8.9 (1)	8.9		<5.7 (1)	5.7		<5.5 (1)	5.5		<8.1 (1)	8.1		<4.5 (3)	4.5		<3.6	3.6	
Total Hexa CDD *	pg	3.3	2.8		4.6	4.1		25.3	3.3		48.9	2.7		<12 (1)	12		17.5	3.3	
Total Hepta CDD *	pg	10.0	3.5		26.3	2.6		36.5	3.4		133	3.2		10.2	3.3		55.7	2.7	
2,3,7,8-Tetra CDF **	pg	<3.4	3.4	0.1	<3.5	3.5	0.1	<4.0	4.0	0.1	7.2	4.4	0.1	<3.2	3.2	0.1	<2.8	2.8	0.1
1,2,3,7,8-Penta CDF **	pg	<3.4	3.4	0.03	<3.9	3.9	0.03	<3.5	3.5	0.03	<4.0	4.0	0.03	<3.5	3.5	0.03	<3.0	3.0	0.03
2,3,4,7,8-Penta CDF **	pg	<3.4	3.4	0.3	<3.9	3.9	0.3	<3.5	3.5	0.3	<4.0	4.0	0.3	<3.6	3.6	0.3	<3.1	3.1	0.3
1,2,3,4,7,8-Hexa CDF **	pg	<2.8	2.8	0.1	<2.2	2.2	0.1	<3.1	3.1	0.1	7.3	3.4	0.1	<3.2	3.2	0.1	<2.3	2.3	0.1
1,2,3,6,7,8-Hexa CDF **	pg	<2.6	2.6	0.1	<2.1	2.1	0.1	<2.9	2.9	0.1	5.1	3.3	0.1	<3.0	3.0	0.1	<2.3	2.3	0.1
2,3,4,6,7,8-Hexa CDF **	pg	<2.9	2.9	0.1	<2.3	2.3	0.1	<3.2	3.2	0.1	<4.3 (1)	4.3	0.1	<3.3	3.3	0.1	<2.5	2.5	0.1
1,2,3,7,8,9-Hexa CDF **	pg	<3.0	3.0	0.1	<2.4	2.4	0.1	<3.4	3.4	0.1	<3.8	3.8	0.1	<3.5	3.5	0.1	<2.6	2.6	0.1
1,2,3,4,6,7,8-Hepta CDF **	pg	4.4	2.6	0.01	<3.6	3.6	0.01	4.5	3.0	0.01	15.2	3.3	0.01	<3.2	3.2	0.01	5.7	3.5	0.01
1,2,3,4,7,8,9-Hepta CDF **	pg	<3.1	3.1	0.01	<4.2	4.2	0.01	<3.6	3.6	0.01	<3.8	3.8	0.01	<3.8	3.8	0.01	<4.6	4.6	0.01
Octa CDF **	pg	7.0	3.9	0.0003	<4.0	4.0	0.0003	4.9	3.2	0.0003	10.2	3.3	0.0003	<3.2	3.2	0.0003	5.1	3.3	0.0003
Total Tetra CDF **	pg	<3.4	3.4		<3.0 (1)	3.0		4.0	3.4		28.6	4.4		<3.2	3.2		<2.8	2.8	
Total Penta CDF **	pg	<3.4	3.4		<3.9	3.9		<3.5	3.5		20.4	4.0		<3.5	3.5		3.5	3.1	
Total Hexa CDF **	pg	<2.8	2.8		<2.2	2.2		<3.1	3.1		21.1	3.5		<3.3	3.3		2.5	2.4	
Total Hepta CDF **	pg	4.4	2.8		<3.9	3.9		4.5	3.3		15.2	3.5		<3.5	3.5		5.7	4.0	
Toxic Equivalency	pg																		

Notes:
(1) EMPC / NDR - Peak detected did not meet ratio criteria and has resulted in an elevated detection limit.

(2) Additional dioxin/ furan ambient sampling requested by the Regional Municipality of Durham

(3) EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit. RT>2 seconds - PCDD/DF analysis-Peak maxima of monitored ions exceeds 2 seconds

* CDD = Chloro Dibenzo-p-Dioxin ** CDF = Chloro Dibenzo-p-Furan

		Quarter 4		Counting	Counting	Counting	Carrelia	Courtice	Courtice		
		Quality 4		Courtice 12	Courtice 13	Courtice 14	Courtice 15	Counce 16	17		
Calculated Concentrations	Units	Maximum	Minimum	3/10/2016	15/10/2016	27/10/2016	8/11/2016	20/11/2016			
2,3,7,8-Tetra CDD *	pg/m³	5.31E-03	4.25E-03	0.005	0.005	0.005	0.004	0.004	0.005		
1,2,3,7,8-Penta CDD *	pg/m³	6.47E-03	3.29E-03	0.005	0.003	0.005	0.006	0.004	0.005		
1,2,3,4,7,8-Hexa CDD *	pg/m³	5.39E-03	3.77E-03	0.004	0.005	0.005	0.004	0.004	0.005		
1,2,3,6,7,8-Hexa CDD *	pg/m³	1.05E-02	4.25E-03	0.004	0.006	0.005	0.011	0.004	0.005		
1,2,3,7,8,9-Hexa CDD *	pg/m³	1.89E-02	3.81E-03	0.004	0.005	0.004	0.019	0.004	0.013		
1,2,3,4,6,7,8-Hepta CDD *	pg/m³	1.59E-01	1.38E-02	0.029	0.029	0.030	0.159	0.014	0.074		
Octa CDD *	pg/m³	5.33E-01	3.80E-02	0.221	0.184	0.265	0.533	0.038	0.244		
Total Tetra CDD *	pg/m³	1.65E-02	5.31E-03	0.007	0.009	0.016	0.006	0.006	0.005		
Total Penta CDD *	pg/m³	1.30E-02	5.03E-03	0.013	0.007	0.008	0.011	0.006	0.005		
Total Hexa CDD *	pg/m³	1.32E-01	9.67E-03	0.013	0.012	0.069	0.132	0.016	0.049		
Total Hepta CDD *	pg/m³	3.58E-01	2.71E-02	0.010	0.012	0.100	0.132	0.010	0.156		
	pg/m³										
2,3,7,8-Tetra CDF **		1.94E-02	3.91E-03	0.005	0.005	0.005	0.019	0.004	0.004		
1,2,3,7,8-Penta CDF **	pg/m³	5.39E-03	4.19E-03	0.005	0.005	0.005	0.005	0.005	0.004		
2,3,4,7,8-Penta CDF **	pg/m³	5.39E-03	4.33E-03	0.005	0.005	0.005	0.005	0.005	0.004		
1,2,3,4,7,8-Hexa CDF **	pg/m³	1.97E-02	2.89E-03	0.004	0.003	0.004	0.020	0.004	0.003		
1,2,3,6,7,8-Hexa CDF **	pg/m³	1.37E-02	2.76E-03	0.004	0.003	0.004	0.014	0.004	0.003		
2,3,4,6,7,8-Hexa CDF **	pg/m³	5.79E-03	3.02E-03	0.004	0.003	0.004	0.006	0.004	0.003		
1,2,3,7,8,9-Hexa CDF **	pg/m³	5.12E-03	3.16E-03	0.004	0.003	0.005	0.005	0.005	0.004		
1,2,3,4,6,7,8-Hepta CDF **	pg/m³	4.09E-02	4.25E-03	0.013	0.005	0.012	0.041	0.004	0.016		
1,2,3,4,7,8,9-Hepta CDF **	pg/m³	6.42E-03	4.54E-03	0.005	0.006	0.005	0.005	0.005	0.006		
Octa CDF **	pg/m³	2.75E-02	4.25E-03	0.021	0.005	0.013	0.027	0.004	0.014		
Total Tetra CDF **	pg/m³	7.70E-02	3.91E-03	0.005	0.004	0.011	0.077	0.004	0.004		
Total Penta CDF **	pg/m³	5.50E-02	4.65E-03	0.005	0.005	0.005	0.055	0.005	0.010		
Total Hexa CDF **	pg/m³	5.68E-02	2.89E-03	0.004	0.003	0.004	0.057	0.004	0.007		
Total Hepta CDF **	pg/m³	4.09E-02	4.65E-03	0.013	0.005	0.012	0.041	0.005	0.016		
	pg/m³	4.07L-02	4.03L-03	0.013	0.003	0.012	0.041	0.003	0.016		
Toxic Equivalency	pg TEQ/m ³	0.004	0.014	0.01/	0.014	0.01/	0.024	0.014	0.017		
TOTAL TOXIC EQUIVALENCY	pg IEQ/III	0.024	0.014	0.016 Courtice	0.014 Courtice	0.016 Courtice	Courtice	0.014 Courtice	Courtice		
Calculated TEQ Concentrations	Units			03/10/2016	15/10/2016	27/10/2016	08/11/2016	20/11/2016	14/12/2016		
2,3,7,8-Tetra CDD *	pg TEQ/m³			0.005	0.005	0.005	0.004	0.004	0.005		
1,2,3,7,8-Penta CDD	pg TEQ/m³			0.005	0.003	0.005	0.006	0.004	0.005		
1,2,3,4,7,8-Hexa CDD	pg TEQ/m³			0.0004	0.0005	0.0005	0.0004	0.0004	0.0005		
1,2,3,6,7,8-Hexa CDD	pg TEQ/m³			0.0004	0.0006	0.0005	0.0011	0.0004	0.0005		
1,2,3,7,8,9-Hexa CDD	pg TEQ/m³			0.0004	0.0005	0.0004	0.0019	0.0004	0.0013		
1,2,3,4,6,7,8-Hepta CDD	pg TEQ/m³			0.0003	0.0003	0.0003	0.0017	0.0001	0.0007		
Octa CDD	pg TEQ/m³			0.00007	0.00006	0.0008	0.00016	0.00001	0.00007		
Total Tetra CDD	pg TEQ/m ³			0.00007	0.00008	0.00008	0.00016	0.00001	0.00007		
Total Penta CDD	pg TEQ/m ³										
Total Hexa CDD	pg TEQ/III										
Total Hepta CDD	pg TEQ/III										
2,3,7,8-Tetra CDF **	pg TEQ/m ³			0.0005	0.0005	0.0005	0.0019	0.0004	0.0004		
1,2,3,7,8-Penta CDF				0.0005	0.0005	0.0005	0.0019	0.0004	0.0004		
1,2,3,1,8-Penta CDF 2,3,4,7,8-Penta CDF	pg TEQ/m ³										
	pg TEQ/m ³			0.001	0.002	0.001	0.002	0.001	0.001		
1,2,3,4,7,8-Hexa CDF	pg TEQ/m ³			0.0004	0.0003	0.0004	0.0020	0.0004	0.0003		
1,2,3,6,7,8-Hexa CDF	pg TEQ/m ³			0.0004	0.0003	0.0004	0.0014	0.0004	0.0003		
2,3,4,6,7,8-Hexa CDF	pg TEQ/m³			0.0004	0.0003	0.0004	0.0006	0.0004	0.0003		
1,2,3,7,8,9-Hexa CDF	pg TEQ/m ³			0.0004	0.0003	0.0005	0.0005	0.0005	0.0004		
1,2,3,4,6,7,8-Hepta CDF	pg TEQ/m³			0.00013	0.00005	0.00012	0.00041	0.00004	0.00016		
1,2,3,4,7,8,9-Hepta CDF	pg TEQ/m ³			0.00005	0.00006	0.00005	0.00005	0.00005	0.00006		
Octa CDF	pg TEQ/m ³			0.00006	0.000002	0.00004	0.00008	0.000001	0.00004		
Total Tetra CDF	pg TEQ/m ³										
Total Penta CDF	pg TEQ/m ³										
Total Hexa CDF	pg TEQ/m ³										
Total Hepta CDF	pg TEQ/m³										
TOTAL TOXIC EQUIVALENCY	pg TEQ/m ³			0.016	0.014	0.016	0.024	0.014	0.017		

Notes:

EDL = Estimated Detection Limit

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

TEF = Toxic Equivalency Factor, TEQ = Toxic Equivalency Quotient

WHO(2005): The 2005 World Health Organization, Human and Mammalian Toxic Equivalency
Factors for Dioxins and Dioxin-like Compounds

Dioxins and Furans	Rundle Road Station																		
Location			Rundle			n 11 2			Rundle			n 11 2			Rundle			Rundle	
Date	dd/mm/yyyy		3/10/2016		Rundle ² 15/10/2016			27/10/2016		Rundle ² 8/11/2016		20/11/2016			Rundle 14/12/2016				
Start Time	hh:mm	0:00			0:00			0:00		0:00			0:00			0:00			
Sample Duration	hours	23.66 TH			23.77 TH			24.17		24.32		24.06 TH			23.54 TH				
Technician								TH			KM								
Filter Number			CXB829-01			DAQ810-01		CAR653-01			DAR742-01			DGG897-01			DGH051-01		
Maxaam ID			DER858		DGO781		DIZ236		DKT749		DMN613			DQP476					
Maxxam Job #			B6L4666		B6M4121		B6N5690		B6O4947		B6P4166			B6R5537					
Total Volumetric Flow	Am ³ /sample		342.02			364.96			365.43		379.51			357.72		365.42			
TOTAL VOICING TION	71111 / 04111 1010		0 12:02			001170			000:10			077.01			007.72			000.12	
		Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF	Value	EDL	WHO ₂₀₀₅ TEF
Analytical Results	Units	Value		2005	Value	LDL	7110 2005 121	value		WII O 2005 121	Value	LDL	WII 3 2005 121	Value	LDL	2005 121	Value	LDL	2005 121
2.3.7.8-Tetra CDD *	pg	<4.0	4.0	1	<3.0	3.0	1	<3.9	3.9	1	<4.1	4.1	1	<3.2	3.2	1	<2.9	2.9	1
1.2.3.7.8-Penta CDD *	pg	4.4	3.6	1	<3.0	3.0	i	<4.9	4.9	1	<4.1	4.1	1	<3.4	3.4	1	<3.0	3.0	i
1,2,3,4,7,8-Hexa CDD *	pg	<3.4	3.4	0.1	<3.2 (4)	3.2	0.1	<3.7	3.7	0.1	<3.8	3.8	0.1	<3.6	3.6	0.1	<3.4	3.4	0.1
1,2,3,6,7,8-Hexa CDD *	pg	<3.5	3.5	0.1	<3.3	3.3	0.1	<3.7	3.7	0.1	4.1	3.9	0.1	<3.6	3.6	0.1	<3.7	3.7	0.1
1,2,3,7,8,9-Hexa CDD *	pg	<3.2	3.2	0.1	3.3	3.0	0.1	<3.4	3.4	0.1	7.1	3.6	0.1	<3.3	3.3	0.1	3.6	3.2	0.1
1,2,3,4,6,7,8-Hepta CDD *	pg	7.1	2.9	0.01	33.6	2.4	0.01	12.1	3.5	0.01	49.8	3.1	0.01	17.4	3.6	0.01	28.1	2.4	0.01
Octa CDD *	pg	50.7	3.5	0.0003	177	3.9	0.0003	50.4	3.4	0.0003	197	4.1	0.0003	51.6	3.3	0.0003	74.3	3.8	0.0003
Total Tetra CDD *	pg	<5.4 (1)	5.4		<8.0 (1)	8.0		<11 (1)	11		<4.4 (1)	4.4		<4.5 (1)	4.5		<2.9	2.9	A
Total Penta CDD *	pg	4.4	3.6		<6.1 (1)	6.1		<5.3 (1)	5.3		<4.1	4.1		<3.4	3.4		<5.6 (1)	5.6	4
Total Hexa CDD *	pg	<9.5 (1)	9.5		18.6	3.2		<16 (1)	16		21.7	3.8		<12 (1)	12		17.0	3.4	4
Total Hepta CDD *	pg	15.2	2.9		67.6	2.4		26.0	3.5		113	3.1		30.1	3.6		58.7	2.4	4
2,3,7,8-Tetra CDF **	pg	<4.6 (1)	4.6	0.1	<3.1	3.1	0.1	<3.7	3.7	0.1	<5.0 (1)(4)	5.0	0.1	<3.1	3.1	0.1	<4.2 (4)	4.2	0.1
1,2,3,7,8-Penta CDF **	pg	<3.4	3.4	0.03	<3.6	3.6	0.03	<4.9	4.9	0.03	<4.7	4.7	0.03	<3.4	3.4	0.03	<2.8	2.8	0.03
2,3,4,7,8-Penta CDF **	pg	<3.5 (1)	3.5	0.3	<3.6	3.6	0.3	<4.9	4.9	0.3	<4.7	4.7	0.3	<3.5	3.5	0.3	<2.9	2.9	0.3
1,2,3,4,7,8-Hexa CDF **	pg	3.5	3.0	0.1	4.9	3.5	0.1	<3.2	3.2	0.1	<4.6 (1)	4.6	0.1	<3.2	3.2	0.1	<2.4	2.4	0.1
1,2,3,6,7,8-Hexa CDF **	pg	<2.8	2.8	0.1	<3.4	3.4	0.1	<3.1	3.1	0.1	<3.7	3.7	0.1	<3.1	3.1	0.1	<2.4	2.4	0.1
2,3,4,6,7,8-Hexa CDF **	pg	<3.1	3.1	0.1	<3.7	3.7	0.1	<3.4	3.4	0.1	<4.1	4.1	0.1	<3.4	3.4	0.1	<2.6	2.6	0.1
1,2,3,7,8,9-Hexa CDF **	pg	<3.3	3.3	0.1	<3.9	3.9	0.1	<3.5	3.5	0.1	<4.3	4.3	0.1	<3.5	3.5	0.1	<2.8	2.8	0.1
1,2,3,4,6,7,8-Hepta CDF ** 1,2,3,4,7,8,9-Hepta CDF **	pg	6.5	2.3 2.7	0.01 0.01	14.5 <4.3	3.6 4.3	0.01 0.01	<3.4 (1) <3.8	3.4 3.8	0.01 0.01	12.4 <4.2	3.6 4.2	0.01	<2.9	2.9 3.4	0.01 0.01	4.5	2.6	0.01 0.01
1,2,3,4,7,8,9-Hepta CDF ** Octa CDF **	pg	<2.7 <5.7 (1)	2.7 5.7	0.01	<4.3 11.4	4.3 4.8	0.01		3.8	0.003	<4.2 8.5		0.01 0.0003	<3.4 3.4	3.4 3.2	0.01	<3.3 4.0	3.3 2.0	0.01
Total Tetra CDF **	pg		3.7	0.0003	<3.2 (1)	4.8 3.2	0.0003	4.3 <3.7	3.3	0.0003	8.5 10.9	3.3 3.9	0.0003		3.2 3.1	0.0003	4.0 4.2	3.3	0.0003
Total Penta CDF **	pg	3.7 <3.7 (3)	3.7		. ,			<3.7 <4.9	3.7 4.9			3.9 4.7		<3.1 <3.5			4.2 4.8		4
Total Hexa CDF **	pg	<3.7 (3) 7.1			<3.6 9.2	3.6					8.0				3.5			2.8	4
Total Hepta CDF **	pg	6.5	3.0 2.5		9.2 19.9	3.6 3.9		<3.3 <3.7 (1)	3.3 3.7		6.1 17.8	4.0 3.9		<3.3 <3.1	3.3 3.1		<2.5 4.5	2.5 2.9	4
Toxic Equivalency	pg	0.5	2.5		19.9	3.9		<3.7(1)	3.7		17.8	3.9		<3.1	3.1		4.5	2.9	4
ioxic Equivalency	pg																		4

Notes:
(1) EMPC / NDR - Peak detected did not meet ratio criteria and has resulted in an elevated detection limit.

(2) Additional dioxin/ furan ambient sampling requested by the Regional Municipality of Durham

(3) RT>2 seconds - PCDD/DF analysis-Peak maxima of monitored lons exceeds 2 seconds. EMPC / NDR - Peak detected does not meet ratio criteria and has resulted in an elevated detection limit.

(4) RT > 3 seconds - PCDD/DF analysis - Peak detected exceeds expected retention time (from internal standard) by greater than 3

seconds.

* CDD = Chloro Dibenzo-p-Dioxin ** CDF = Chloro Dibenzo-p-Furan

	Quarter 4			Rundle	Rundle2	Rundle	Rundle2	Rundle	Rundle		
				12	13	14	15	16	17		
Calculated Concentrations											
	Units	Maximum	Minimum								
				3/10/2016	15/10/2016	27/10/2016	8/11/2016	20/11/2016	14/12/2016		
2,3,7,8-Tetra CDD *	pg/m³	5.85E-03	3.97E-03	0.006	0.004	0.005	0.005	0.004	0.004		
1,2,3,7,8-Penta CDD	pg/m³	1.29E-02	4.10E-03	0.01286	0.004	0.007	0.005	0.005	0.004		
1,2,3,4,7,8-Hexa CDD	pg/m³	5.06E-03	4.38E-03	0.005	0.004	0.005	0.005	0.005	0.005		
1,2,3,6,7,8-Hexa CDD	pg/m³	1.08E-02	4.52E-03	0.005	0.005	0.005	0.011	0.005	0.005		
1,2,3,7,8,9-Hexa CDD	pg/m³	1.87E-02	4.61E-03	0.005	0.009	0.005	0.019	0.005	0.010		
1,2,3,4,6,7,8-Hepta CDD	pg/m³	1.31E-01	2.08E-02	0.021	0.092	0.033	0.131	0.049	0.077		
Octa CDD	pg/m³	5.19E-01	1.38E-01	0.148	0.485	0.138	0.519	0.144	0.203		
Total Tetra CDD	pg/m³	1.51E-02	3.97E-03	0.008	0.011	0.015	0.006	0.006	0.004		
Total Penta CDD	pg/m³	1.29E-02	4.75E-03	0.013	0.008	0.007	0.005	0.005	0.008		
Total Hexa CDD	pg/m³	5.72E-02	1.39E-02	0.014	0.051	0.022	0.057	0.017	0.047		
Total Hepta CDD	pg/m³	2.98E-01	4.44E-02	0.044	0.185	0.071	0.298	0.084	0.161		
2,3,7,8-Tetra CDF **	pg/m³	6.72E-03	4.25E-03	0.007	0.004	0.005	0.007	0.004	0.006		
1,2,3,7,8-Penta CDF	pg/m³	6.70E-03	3.83E-03	0.005	0.005	0.007	0.006	0.005	0.004		
2,3,4,7,8-Penta CDF	pg/m³	6.70E-03	3.97E-03	0.005	0.005	0.007	0.006	0.005	0.004		
1,2,3,4,7,8-Hexa CDF	pg/m³	1.34E-02	3.28E-03	0.010	0.013	0.004	0.006	0.004	0.003		
1,2,3,6,7,8-Hexa CDF	pg/m³	4.87E-03	3.28E-03	0.004	0.005	0.004	0.005	0.004	0.003		
2,3,4,6,7,8-Hexa CDF	pg/m³	5.40E-03	3.56E-03	0.005	0.005	0.005	0.005	0.005	0.004		
1,2,3,7,8,9-Hexa CDF	pg/m³	5.67E-03	3.83E-03	0.005	0.005	0.005	0.006	0.005	0.004		
1,2,3,4,6,7,8-Hepta CDF	pg/m³	3.97E-02	4.05E-03	0.003	0.003	0.005	0.033	0.003	0.012		
1,2,3,4,7,8,9-Hepta CDF	pg/m³	5.89E-03	3.95E-03	0.004	0.006	0.005	0.006	0.005	0.005		
Octa CDF		3.12E-02	8.33E-03	0.004	0.000	0.003	0.000	0.003	0.003		
Total Tetra CDF	pg/m³	3.12E-02 2.87E-02		0.008	0.031	0.012	0.022	0.010	0.011		
	pg/m³		4.33E-03	0.005	0.004	0.003	0.024	0.004	0.011		
Total Penta CDF	pg/m³	2.11E-02	4.89E-03			0.007	0.021				
Total Hexa CDF	pg/m³	2.52E-02	3.42E-03	0.021	0.025			0.005	0.003		
Total Hepta CDF	pg/m³	5.45E-02	4.33E-03	0.019	0.055	0.005	0.047	0.004	0.012		
Toxic Equivalency	pg/m³				0.01/	0.010					
TOTAL TOXIC EQUIVALENCY	pg TEQ/m³	2.54E-02	1.43E-02	0.025	0.016	0.019	0.021	0.015	0.014		
Calculated TEQ Concentrations	Units			Rundle	Rundle2 15/10/2016	Rundle 27/10/2016	Rundle2 08/11/2016	Rundle	Rundle		
2,3,7,8-Tetra CDD *	ng TFO/m³			03/10/2016 0.006	0.004	0.005	0.005	20/11/2016 0.004	14/12/2016 0.004		
1,2,3,7,8-Penta CDD	pg TEQ/m ³ pg TEQ/m ³			0.008	0.004	0.003	0.005	0.004	0.004		
	. 0			0.005	0.004	0.0005	0.0005	0.0005	0.0005		
1,2,3,4,7,8-Hexa CDD	pg TEQ/m ³			0.0005	0.0004	0.0005	0.0005	0.0005	0.0005		
1,2,3,6,7,8-Hexa CDD	pg TEQ/m ³						0.0011				
1,2,3,7,8,9-Hexa CDD	pg TEQ/m ³			0.0005	0.0009	0.0005		0.0005	0.0010		
1,2,3,4,6,7,8-Hepta CDD	pg TEQ/m ³			0.0002	0.0009	0.0003	0.0013	0.0005	0.0008		
Octa CDD	pg TEQ/m ³			0.00004	0.00015	0.00004	0.00016	0.00004	0.00006		
Total Tetra CDD	pg TEQ/m³										
Total Penta CDD	pg TEQ/m ³										
Total Hexa CDD	pg TEQ/m ³										
Total Hepta CDD	pg TEQ/m ³										
2,3,7,8-Tetra CDF **	pg TEQ/m ³			0.0007	0.0004	0.0005	0.0007	0.0004	0.0006		
1,2,3,7,8-Penta CDF	pg TEQ/m ³			0.0001	0.0001	0.0002	0.0002	0.0001	0.0001		
2,3,4,7,8-Penta CDF	pg TEQ/m ³			0.002	0.001	0.002	0.002	0.001	0.001		
1,2,3,4,7,8-Hexa CDF	pg TEQ/m ³			0.0010	0.0013	0.0004	0.0006	0.0004	0.0003		
1,2,3,6,7,8-Hexa CDF	pg TEQ/m ³			0.0004	0.0005	0.0004	0.0005	0.0004	0.0003		
2,3,4,6,7,8-Hexa CDF	pg TEQ/m ³	I		0.0005	0.0005	0.0005	0.0005	0.0005	0.0004		
1,2,3,7,8,9-Hexa CDF	pg TEQ/m ³	1		0.0005	0.0005	0.0005	0.0006	0.0005	0.0004		
1,2,3,4,6,7,8-Hepta CDF	pg TEQ/m³	1		0.00019	0.00040	0.00005	0.00033	0.00004	0.00012		
1,2,3,4,7,8,9-Hepta CDF	pg TEQ/m³	I		0.00004	0.00006	0.00005	0.00006	0.00005	0.00005		
Octa CDF	pg TEQ/m ³	I		0.000002	0.000009	0.00004	0.000007	0.000003	0.000003		
Total Tetra CDF	pg TEQ/m ³	1									
Total Penta CDF	pg TEQ/m ³										
Total Hexa CDF	pg TEQ/m ³										
Total Hepta CDF	pg TEQ/m ³										
TOTAL TOXIC EQUIVALENCY	. 0	t		0.025	0.016	0.019	0.021	0.015	0.014		

Notes:

RDL = Reportable Detection Limit

* CDD = Chloro Dibenzo-p-Dioxin, ** CDF = Chloro Dibenzo-p-Furan

IEF = Toxic Equivalency Factor, IEQ = Toxic Equivalency Quotient

WHO(2005): The 2005 World Health Organization, Human and

Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like