Covanta Durham York Renewable Energy Limited Partnership

Acceptance Test Report

5-DAY

Throughput Capacity Test Residue Quality Test Residue Quantity Test

Approved by: 2 Zenon Semanyshyn V.P., Engineering

Approved by

Paul Ewald Director, Process Engineering

Submitted by: <u>S.G. DeDuck, P.E.</u> Manager, Technical Operations

November 2015

This Page Intentionally Left Blank

TABLE OF CONTENTS

1	.OB	JECT	۲IVE	. 1
	1.1	Thre	oughput Performance Test	1
	1.2	Res	idue Quality Test	1
	1.3	Res	idue Quantity Test	1
2	.SU	ММА	RY & CONCLUSIONS	. 1
	2.1	Thre	oughput Capacity Test	1
	2.2	Res	idue Quality Test	2
		2.2.1	Unburned Combustible	2
		2.2.2	Moisture	2
	2.3	Res	idue Quantity Test	2
3	.TE	ST PI	ROCEDURES & MODIFICATIONS	. 2
4	.DA	TA A	NALYSIS & CALCULATIONS	. 2
	4.1	Thre	oughput Capacity Test	3
		4.1.1	Actual Waste Throughput	3
		4.1.2	Determination of Guaranteed Throughput	4
		4.1.3	Comparison of Guaranteed and Actual Waste Processed	
	4.2	Res	idue Quality Test	10
	4.3	Res	idue Quantity Test	11
		4.3.1	Measurement of Total Bottom Ash & Treated Flyash	.11
		4.3.2	Adjustment/Subtraction of Materials to Treat Flyash	. 12
		4.3.3	Net Correction for Flyash Treatment Materials	. 13
5	.DIS	SCUS	SION	14
	5.1	Thre	oughput Performance Test	14
		5.1.1	Daily Refuse HHV vs 8-Hour As-Tested HHV	
	5.2	Res	idue Quality Test	14
		5.2.1	Unburned Carbon Detection Limit	. 14
		5.2.2	Moisture Content	. 14
6	.AC	KNO	WLEDGEMENTS	15
7	.Tab	oles		16
	7.1	Res	idue Quality Test	16
		7.1.1	Sample Weight Data Sheets (3 sheets)	. 16
		7.1.2	SGS Unburned Combustible & Moisture Lab Results	20

1 OBJECTIVE

1.1 Throughput Performance Test

The objective of the Throughput Capacity Test was to demonstrate that the Facility could meet the Throughput Capacity Guarantee during a consecutive, five (5) day, (120-hour) test period. The Facility had to process 2,180 tonnes of Acceptable Waste at the Reference Waste HHV of 13 MJ/kg (5,589 BTU/lb) HHV or an equivalent, as shown in item 2 of Exhibit 2 to Appendix 19 of the Project Agreement, ("Agreement"). Over the course of the five (5) day test, each unit had to process at least 1,000 tonnes of Reference Waste or an equivalent. Furthermore, if the Residue Quality Guarantee was not met, the Facility would not pass the Throughput Capacity Test, even if the required tonnes of Waste were processed.

1.2 Residue Quality Test

The objective of the Residue Quality Test was to demonstrate that the Facility would produce Residue (consisting of bottom ash and grate siftings only) containing not more than three percent (3%) unburned combustible matter by dry weight and twenty-five percent (25%) moisture by weight after the combustion of Acceptable Waste. The average results during the five (5) day Throughput Capacity Test were compared to the guarantee.

1.3 Residue Quantity Test

The objective of the Residue Quantity Test was to demonstrate that the Facility could meet the Performance Guarantee for the generation of total Residue (including bottom ash, grate siftings, boiler and air pollution control flyash) as a percentage of waste combusted.

Residue was weighed with truck scales over the 5-Day Throughput Capacity Test for comparison to the guarantees. The percent guarantees vary with Waste HHV per item 4, Exhibit 2, Appendix 19 of the Agreement and exclude recovered ferrous and non-ferrous metals per the definition of Residue.

2 <u>SUMMARY & CONCLUSIONS</u>

Both the Throughput Capacity Test and Residue Quality & Quantity Tests were conducted in compliance with the requirements of the environmental permit. Facility CEM data are included in the Appendix for reference.

2.1 Throughput Capacity Test

The Throughput Capacity Test commenced at 0000 hours on September 27, 2015 and concluded five (5) days later at 2400 hours on October 1, 2015. The total actual throughput for the Project was **2,260** tonnes (**2,492** tons) as measured by the crane weigh scale system. The average refuse HHV for the 5-day test period was determined to be **13,336** kJ/kg (**5,733** BTU/lb). Per Exhibit 2 to Appendix 19 of the Agreement, for the as-tested HHV, the guaranteed throughput was **2,124** tonnes (**2,341** tons). Therefore, since the actual throughput was **136.7** tonnes (**150.6** tons) above the guarantee and as described in the following section, the Residue Quality Test was successfully demonstrated, the Throughput Capacity Guarantee was also successfully demonstrated. Each unit also processed over 1000 tonnes, with Units 1 & 2 processing **1,252** and **1,240** tonnes, respectively, thereby successfully surpassing that criteria.

2.2 Residue Quality Test

The 5-Day Residue Quality Test was run concurrently with the Throughput Capacity Test with the residue sampling commencing at 0100 hours on October 27, 2015 and concluding at 0100 hours on November 1, 2015. The daily composite samples, reduced from 2-hour samples were analyzed by SGS Mineral Services Division in South Holland IL, an independent laboratory.

2.2.1 Unburned Combustible

All 5 daily lab results showed the combustion residue contained less than the test method detectible limit of 232.6 kJ/kg (100 BTU/lb) or less than 0.83% unburned combustible matter by dry weight. Note the reference HHV for unburned combustible is 27,912 kJ/kg (12,000 BTU/lb) as recommended by ASME PTC-34. The Residue Quality Guarantee for unburned combustible was therefore successfully demonstrated.

2.2.2 Moisture

The 5 daily lab results of the combustion residue averaged 16.7% moisture which is less than the 25% moisture guarantee. The Residue Quality Guarantee for moisture was therefore successfully demonstrated.

2.3 Residue Quantity Test

The 5-Day Residue Quantity Test was run concurrently with the 5-Day Throughput Capacity Test and the 5-Day Residue Quality Test with the residue collection commencing at 0100 hours on September 27, 2015 and concluding at 0100 hours on October 1, 2015. Consistent with the test procedure modification described in Section 3 below, the total amount of Residue (bottom ash plus flyash) was **26.8%** of the refuse processed during the 5 days. The average refuse HHV for the 5 days was determined to be 13.3 MJ/kg so the guarantee from Exhibit 2 of Appendix 19 was **29.4%**. Since the actual Residue percentage was **less than** the guaranteed Residue percentage, the Residue Quantity Guarantee was therefore met for the 5-Day test.

3 TEST PROCEDURES & MODIFICATIONS

The Throughput Capacity and Residue Quality and Quantity tests were performed according to the test procedures agreed to by Covanta Durham York Renewable Energy Limited Partnership (Covanta) and the Durham York Regions' Consulting Engineer, HDR. The test procedures are included in the Appendix.

There was one modification to the test procedures concerning the Residue Quantity Guarantee Test. It was discovered that contrary to the Project Agreement definitions, the test procedures had incorrectly defined Residue to include the Fly Ash treatment materials of cement, pozzolan and water. Data was acquired and calculations of the usage of these materials were performed so they could be subtracted from the total treated Fly Ash leaving the facility. These calculations are described in section 4.3.

4 DATA ANALYSIS & CALCULATIONS

Major boiler operating data, e.g. water, steam and air flows and steam and flue gas temperatures were recorded by the facility DCS and were plotted in the individual data files forwarded to HDR during the testing. These trends demonstrate boiler operating conditions for the 5-day testing period.

Instrument calibrations were performed prior to the start of the Throughput Capacity and Residue Quality & Quantity Tests. Other than a small 0.3% correction to crane scales, no other corrections to test data were required or performed.

Covanta-5Day-Test-Report.docx

4.1 Throughput Capacity Test

4.1.1 Actual Waste Throughput

4.1.1.1 Determination of Total Actual Waste Throughput

Actual waste throughput was calculated as the sum of the grapple weights loaded into the feed hoppers for each day. Refer to the 30-Day test report and Appendix for more detailed data and summaries.

4.1.1.2 Crane Span Checks

Calibration weights of 3966 and 3926 kgs as weighed on the facility truck scales were lifted by the cranes and recorded twice a day; between 7 and 8 am and between 5 and 6 pm of the 5-Day Throughput Capacity Test. See the 30-Day test report for the complete crane scale span check log sheets. The tables below show the span checks performed, the average deviation between the test weight and the average scale indication for the 5-Day period.

	Covanta Durham / York <u>East</u> Crane Scale Span Check Record Sheet													
	Test Zero End Lift (kg)									Average	Deviation			
Date	Time	Crane	Weight (kg)	Initial (kg)	(kg)	1	2	3	Reduntant (Parking)	(kg)	(kg)	Remarks / Initial		
9/26/2015	18:58	East	3,966	0	20	4,035	4,045	4,035	4,030	4,038.3	72.3	DD		
9/27/2015	07:09	East	3,966	15	35	4,045	4,045	4,045	4,030	4,045.0	79.0	RL		
9/27/2015	17:16	East	3,966	0	25	4,055	4,055	4,070	4,040	4,060.0	94.0			
9/28/2015	07:09	East	3,966	0	30	4,050	4,045	4,045	4,035	4,046.7	80.7			
9/28/2015	17:06	East	3,966	0	25	4,045	4,035	4,030	4,030	4,036.7	70.7			
9/29/2015	07:08	East	3,966	0	20	4,060	4,050	4,050	4,025	4,053.3	87.3			
9/29/2015	17:11	East	3,966	-5	15	4,040	4,040	4,040	4,030	4,040.0	74.0			
9/30/2015	07:12	East	3,966	-5	5	4,035	4,025	4,015	4,005	4,025.0	59.0			
9/30/2015	17:02	East	3,966	0	5	4,025	4,010	4,025	4,015	4,020.0	54.0			
10/1/2015	07:16	East	3,966	-5	15	4,020	4,000	4,015	4,015	4,011.7	45.7			
10/1/2015	17:14	East	3,966	-5	10	4,010	4,020	4,020	4,015	4,016.7	50.7			
10/2/2015	07:19	East	3,966	-20	0	4,000	3,980	3,985	3,980	3,988.3	22.3			
1st 5-Day Avg		East	3,966	-2.1	17.1				4,020.8	4,031.8	65.8	1.66%		

	Covanta Durham / York West Crane Scale Span Check Record Sheet													
			Test	Zero	Zero End		Lift	(kg)	,	Average	Deviation			
Date	Time	Crane	Weight (kg)	Initial (kg)	(kg)	1	2	3	Reduntant (Parking)	(kg)	(kg)	Remarks / Initial		
9/26/2015	19:19	West	3,926	0	20	3,885	3,890	3,890	3,865	3,888.3	-37.7	DD		
9/27/2015	07:30	West	3,926	0	20	3,890	3,895	3,895	3,870	3,893.3	-32.7	RL		
9/27/2015	17:35	West	3,926	0	25	3,890	3,900	3,900	3,885	3,896.7	-29.3	RL		
9/28/2015	07:32	West	3,926	0	15	3,900	3,900	3,900	3,880	3,900.0	-26.0			
9/28/2015	17:25	West	3,926	0	15	3,895	3,905	3,905	3,880	3,901.7	-24.3			
9/29/2015	07:27	West	3,926	0	5	3,880	3,890	3,890	3,875	3,886.7	-39.3			
9/29/2015	17:31	West	3,926	5	20	3,895	3,915	3,905	3,890	3,905.0	-21.0			
9/30/2015	07:30	West	3,926	15	25	3,885	3,875	3,885	3,865	3,881.7	-44.3			
9/30/2015	17:26	West	3,926	5	30	3,895	3,895	3,895	3,875	3,895.0	-31.0			
10/1/2015	07:31	West	3,926	5	20	3,875	3,875	3,895	3,850	3,881.7	-44.3			
10/1/2015	17:31	West	3,926	0	-15	3,870	3,890	3,870	3,860	3,876.7	-49.3			
10/2/2015	07:34	West	3,926	-5	20	3,860	3,860	3,855	3,840	3,858.3	-67.7			
1st 5-Day Avg		West	3,926	2.1	16.7				3,869.6	3,888.8	-37.3	-0.95%		

4.1.1.3 Correction of Crane Scale Data

Corrections for calibration drift were made by applying the average percent deviation per crane during the 5-Day test period to all weights fed by the associated crane during that period as illustrated in the table below. The corrected throughput was 0.41% higher than the as-measured value.

Covanta-5Day-Test-Report.docx

5-Day Res	sidue Qua	ntity Test - Crane Feed	Adjustment								
9/27/2015 00:00 - 10/1/2015 24:00											
	Unit	Crane 1 (East)	Crane 2 (West)	Total / Average / Net							
Crane Feed by Crane Weighing System	kg	26,032	2,225,196	2,251,228							
Crane Feed Count	Count	14	1,266	1,280							
Average Crane Load per Feed	kg/feed	1,859	1,758	1,759							
Crane Span Check Reference Weight	kg	3,966	3,926								
Average Load Percent of Span Weight	%	46.9%	44.8%								
Crane Span Check Deviation	%	1.66%	-0.95%								
Crane Feed Adjustment Factor	%	-0.78%	0.42%								
Crane Feed Adjustment	kg	-203	9,452	9,250							
Adjusted Crane Feed	kg	25,829	2,234,648	2,260,478							
Percentage of Net Adjustment	%			0.41%							

Daily throughput summaries are also included in the 30-Day test report. Crane scale data in included in the Appendix.

4.1.2 Determination of Guaranteed Throughput

In order to obtain the guaranteed throughput from the table in item 3 of Exhibit 2 to Appendix 19, the average HHV of waste for the 5 days must first be obtained. The following sections describe the process used to obtain the average daily refuse HHV for the 5 Days.

4.1.2.1 Boiler Calorimetry (Refuse HHV) Tests

As part of the Energy Recovery Tests, five (5), 8-hour boiler-as-a-calorimeter (B-A-C) tests were performed each day from September 27 through October 1, 2015 in accordance with ASME PTC-34 to obtain 5, 8-hour refuse HHV's. These 5 test results were utilized to calibrate the theoretical, site specific, specific steam output (SSO) correlation -- a linear correlation between refuse HHV (BTU/Lb Refuse) and specific steam output (BTU Steam/Lb Refuse) that was presented in the test procedures. The calibrated correlation was then used to obtain the average daily HHV for each of the 5 days of the Throughput Capacity Test.

Calculations and data for the HHV tests can be found in the Energy Recovery Test Report. An excerpt of the results summary of the 5 tests from that report is included as Table 1 below.

Durham York Energy Recovery: Overall Test Summary												
Start Time 9/27/15 8:00 9/28/15 8:00 9/29/15 9:00 9/30/15 8:00 10/1/15 9:00												
	End Time	9/27/15 16:00	9/28/15 16:00	9/29/15 17:00	9/30/15 16:00	10/1/15 17:00						
	Test	ER 1	ER 2	ER 3	ER 4	ER 5	AvG					
Actual Refuse Processed	tonnes	146	143	138	153	144	145					
Steam Flow	kg/hr	70,881	69,894	70,206	69,621	69,919	70,104					
Steam Temperature	С	501	503	500	505	501	502					
Steam Pressure	bar-g	88.4	88.4	88.4	88.4	88.4	88.4					
% of MCR Steam Output	%	104%	101%	104%	103%	103%	103%					
Feedwater Temperature	С	138	138	136	136	136	137					
Boiler Outlet Oxygen, Dry	%	8.23	8.36	8.20	8.13	7.42	8.07					
Flue Gas Moisture @ Boiler Outlet	%	16.1	16.3	15.6	15.4	15.2	15.7					
Excess Air	%	58.2	58.1	52.2	56.1	54.1	55.7					
Flue Gas Flow	act m³/h	184,793	191,918	188,357	195,575	174,272	186,983					
Heated Comb Air Temperature	С	74	75	124	71	144	98					
Economizer Outlet Temperature	С	166	167	166	167	166	167					
Heat Input	KJ/kg	14,040	14,322	14,796	13,416	13,945	14,104					
Heat Losses	KJ/kg	3,225	3,397	3,381	3,198	3,088	3,258					
Heat Credits	KJ/kg	248	278	539	232	534	366					
Heat Output	KJ/kg	10,815	10,926	11,414	10,218	10,857	10,846					
Unburned Combustible	%	0.83	0.83	0.83	0.83	0.83	0.83					
Residue Moisture Content	%	19.6	18.0	17.4	15.0	16.5	17.3					
As-Tested Waste HHV	KJ/kg	13,792	14,044	14,257	13,184	13,411	13,738					
As-Tested Boiler Efficiency	%	77.0	76.3	77.2	76.2	77.9	76.9					

4.1.2.2 Un-Calibrated Refuse HHV's from Correlation

The *un-calibrated* site-specific theoretical linear correlation of normalized specific steam output ratio to refuse HHV was calculated and presented in the test procedures. The SSO ratio is the ratio of the heat output in the feedwater to steam conversion in BTU/lb including boiler blowdown, divided by the heat input in the refuse, i.e. the refuse higher heating value, also in BTU/lb.

$$SSO\left(\frac{BTU}{lb}\right) = \frac{\left[W_{stm} \times \left(H_{stm} - H_{fw}\right) + W_{CBD} \times \left(H_{f-drum} - H_{fw}\right)\right]}{W_{refuse}}$$

where:

 $W_{stm} = steam \ production \ (lbs)$ $H_{stm} = Enthalpy \ of \ main \ steam \ (BTU/lb)$ $H_{fw} = Enthalpy \ of \ feedwater \ (BTU/lb)$ $W_{refuse} = refuse \ processed \ (lbs)$ $W_{CBD} = continuous boiler blowdown (lbs)$ $H_{f-drum} = Fluid enthalpy of drum (BTU/lb)$

To develop this correlation, typical waste ultimate analyses along with design ultimate analyses from the Martin Stoker design summary sheets were used. Design operating parameters for the Durham York boilers were also used to customize the correlation to the Durham York boiler design. The resulting equation was HHV (BTU/lb) = $1.07 \times SSO + 671$.

4.1.2.3 Validation/Calibration of Specific Steam Output Correlation using the 5 HHV Tests

Data required by the correlation for the same time periods as the 5, 8-hour ASME PTC 34 HHV tests are shown in the table below. As described in the test procedures, the calculation results of each 8-hour SSO and corrections of the SSO to design parameters are also shown in the below table.

			ER1	ER2	ER3	ER4	ER5
		From:	9/27/15	9/28/15	9/29/15	9/30/15	10/1/15
OVANTA DURHAM / YOF	RK		8:00:00	8:00:00	9:00:00	8:00:00	8:00:00
		To:	9/27/15	9/28/15	9/29/15	9/30/15	10/1/15
HV Calculation Sheet			16:00:00	16:00:00	17:00:00	16:00:00	16:00:00
		From:	9/27/15	9/28/15	9/29/15	9/30/15	10/1/15
			8:00:00	8:00:00	9:00:00	8:00:00	8:00:00
		To:	9/27/15	9/28/15	9/29/15	9/30/15	10/1/15
			16:00:00	16:00:00	17:00:00	16:00:00	16:00:00
REFERENCE	DATA INPUTS	UNITS	VALUE	VALUE	VALUE	VALUE	VALUE
VALUES	Refuse Processed Boiler 1	Tons	80.1	80.3	77.2	83.8	81.0
	Refuse Processed Boiler 2	Tons	81.7	77.8	74.9	85.4	78.3
	Total Operating Time - Unit 1	Hours	8.0	8.0	8.0	8.0	8.0
	Total Operating Time - Unit 2	Hours	8.0	8.0	8.0	8.0	8.0
	Boiler 1 Steam Production	klbs	620.3	615.8	620.1	611.7	618.7
	Boiler 2 Steam Production	klbs	633.3	616.9	618.1	616.2	614.5
	Boiler 1 Blowdown Flow	klbs	0.0	0.0	0.0	0.0	0.0
	Boiler 2 Blowdown Flow	klbs	0.0	0.0	0.0	0.0	0.0
930 deg F	Boiler 1 Stm Temp	deg F	934.7	934.9	933.5	938.2	937.5
	Boiler 2 Stm Temp	deg F	934.1	938.8	932.2	942.4	929.4
1300 psig	Boiler 1 Stm Press	psig	1,282.7	1,282.2	1,282.2	1,282.2	1,282.7
	Boiler 2 Stm Press	psig	1,282.9	1,282.4	1,282.6	1,282.5	1,282.6
275 deg F	Boiler 1 Feedwater Temperature	deg F	280.8	280.8	277.2	277.0	277.2
-	Boiler 2 Feedwater Temperature	deg F	280.0	279.9	276.2	276.3	276.6
	Boiler 1 Feedwater Pressure	psig	1,469.5	1,470.6	1,469.0	1,467.1	1,467.6
	Boiler 2 Feedwater Pressure	psig	1,486.2	1,476.0	1,473.7	1,473.5	1,464.4
	Boiler 1 Drum Pressure	psig	1,400.1	1,397.7	1,399.4	1,395.5	1,399.0
	Boiler 2 Drum Pressure	psig	1,403.9	1,396.6	1,397.2	1,395.0	1,395.9
330 deg F	Blr 1 Econ Exit Gas Temp	deg F	328.7	329.3	328.8	330.0	329.2
	Blr 2 Econ Exit Gas Temp	deg F	331.6	333.5	330.0	332.9	329.4
200 deg F	Blr 1 Heated Comb Air Temp	deg F	169.6	169.6	256.6	164.3	289.3
	Blr 2 Heated Comb Air Temp	deg F	162.7	163.5	252.6	157.1	291.9
80 deg F	Boiler 1 Ambient Air Temp	deg F	73.2	77.1	78.3	71.3	66.8
	Boiler 2 Ambient Air Temp	deg F	73.2	77.1	78.3	71.3	66.8
I	Blr 1 Econ Exit Dry O2	%	7.98	7.97	7.44	7.78	7.61
	Blr 2 Econ Exit Dry O2	%	8.47	8.73	8.96	8.47	7.22
1,000 Btu/cuft	Aux Fuel Usage - Boiler 1 Natural Gas	kcuft	0.00	0.00	0.00	0.00	0.00
1,000 Btu/cuft	Aux Fuel Usage - Boiler 2 Natural Gas	kcuft	5.46	0.00	0.00	0.00	0.00

Covanta-5Day-Test-Report.docx

			ENTHALPIES							
1,455.71	Btu/lb		Main Steam	Btu/lb	1,458.17	1,458.33	1,457.52	1,460.32	1,459.88	
					1,457.82	1,460.67	1,456.69	1,462.86	1,455.00	
247.14	Btu/lb		Feedwater	Btu/lb	252.87	252.81	249.14	248.99	249.13	
					252.06	251.94	248.17	248.29	248.52	
			Blowdown	Btu/lb	600.70	600.38	600.60	600.09	600.55	
					601.18	600.24	600.32	600.03	600.14	
			CALCULATIONS							
54.83	%		% Excess Air from %O2	%	60.74	60.64	54.74	58.41	56.53	
			% Excess Air from %O2	%	66.84	70.30	73.61	66.80	52.50	
			Bir 1 Steam Ht Output	MBTUH	93.46	92.79	93.67	92.62	93.64	
85%	Eff. on Aux Fuel		Bir 2 Steam Ht Output	MBTUH	95.45	93.21	93.37	93.56	92.67	
		0.85	Ht Output due to Aux Fuel	MBTUH	-	-	-	-	-	
			Ht Output due to Aux Fuel	MBTUH	0.58	-	-	-	-	
			Bir 1Ht Output from Refuse	MBTUH	93.46	92.79	93.67	92.62	93.64	
			Bir 2Ht Output from Refuse	MBTUH	94.87	93.21	93.37	93.56	92.67	
			Blr 1 Spec Stm Output (BTU/lb ref fired)		4,667.62	4,623.66	4,853.25	4,419.80	4,623.62	
			Blr 2 Spec Stm Output (BTU/lb ref fired)		4,645.89	4,792.22	4,984.92	4,381.46	4,733.73	
			Weighted Average SSO (BTU/lb)		4,656.6	4,706.6	4,918.1	4,400.5	4,677.7	
			ADJUSTMENTS							
	Factors		Total/Average for both Boilers							
			Wgt Avg Econ Gas Temp	deg F	330.2	331.4	329.4	331.4	329.3	
0.40	% output/10 deg F		Econ Gas Temp Adjustment	BTU/lb	0.4	2.6	(1.2)	2.5	(1.3)	
			Wgt Avg Htd Comb Air Temp	deg F	166.1	166.6	254.6	160.7	290.6	
			Wgt Avg Ambient Air Temp	deg F	73.2	77.1	78.3	71.3	66.8	
	% output/10 deg F		Htd Comb Air Temp Adjustment	BTU/lb	35.3	40.3	(77.6)	37.7	(135.8)	
-0.32	% output/10 deg F		Ambient Air Temp Adjustment	BTU/lb	10.1	4.3	2.7	12.2	19.7	
			Wgt Avg Excess Air	%	63.8	65.4	64.0	62.6	54.5	
	% output/10%		Excess Air Adjustment	BTU/lb	21.8	25.8	23.5	17.9	(0.7)	
Slope	y-intercept		Adjusted SSO (BTU/lb ref fired)	Btu/lb	4,724.2	4,779.7	4,865.5	4,470.8	4,559.6	
1.1108	697.09		HHV from Correlation	BTU/lb	5,945	6,006	6,102	5,663	5,762	
			ASME PTC 34 HHV	BTU/lb	5,920	6,029	6,137	5,664	5,767	
			Δ% & RMS Δ%		-0.41%	0.37%	0.58%	0.02%	0.08%	0

As stated in the test procedures, to calibrate this theoretical curve to actual tested conditions, the fixed losses used in the original calculation of the theoretical correlation were increased until the root-mean-square difference between the 5, 8-hour ASME PTC 34 HHV's and those determined from the correlation was minimized. An increase in the fixed losses to 5.5% from 3.6% achieved the best agreement, i.e. the lowest root-mean-square difference. The 5, 8-hour HHV's obtained from the correlation and the 5, 8-hour HHV's obtained using PTC 34 boiler calorimetry tests for the same time periods, along with the differences are summarized below in Table 3

		Test Name:	ER1	ER2	ER3	ER4	ER5		
		Test	9/27/2015	9/28/2015	9/29/2015	9/30/2015	10/01/2015	Root-	
		Date/Time	- 00:80	- 00:80	09:00 -	- 00:80	09:00 -	Mean-	
		Dater Time	16:00	16:00	17:00	16:00	17:00	square	Notes:
ASME PTC	C 34 HHV	BTU/lb	5,920	6,029	6,137	5,664	5,767		
HHV from Co	orrelation	BTU/lb	5,945	6,006	6,102	5,663	5,762		After correlation calibration using 5.5% fixed losses.
		Δ%	-0.41%	0.37%	0.58%	0.02%	0.08%	0.36%	
		(Δ%) ²	0.001680	0.001381	0.003383	0.000004	0.000072		
Г		2.05	3.30%	4.05%	4.25%	3.71%	3.77%	3.83%	
		3.59	1.68%	2.44%	2.65%	2.10%	2.16%	2.23%	
	Fixed	4.00	1.24%	2.00%	2.21%	1.66%	1.72%	1.80%	
	Heat	5.00	0.14%	0.92%	1.13%	0.57%	0.63%	0.76%	
	Loss (%)	5.50	-0.41%	0.37%	0.58%	0.02%	0.08%	0.36%	Best Fit (minimum ∆%)
I*	LOSS (%)	6.00	-0.97%	-0.18%	0.03%	-0.54%	-0.47%	0.55%	
		6.50	-1.54%	-0.75%	-0.54%	-1.10%	-1.04%	1.05%	
		7.00	-2.11%	-1.31%	-1.10%	-1.67%	-1.61%	1.60%	

The calibrated theoretical specific steam output correlation is shown below.

The X-axis of the correlation represents the specific steam output ratio or BTU of steam output divided by the pounds of refuse processed. The Y-axis represents the respective refuse HHV in BTU/lb. The individual points on the chart represent the HHV's from the ASME boiler calorimetry tests. The *calibrated* theoretical correlation line equation is:

This theoretical correlation is referenced to the design parameters of economizer exit gas temperature, ambient air temperature, heat credit and percent excess air.

4.1.2.4 Daily Specific Steam Ratios

The specific steam correlation is then utilized to determine the daily refuse HHV of the refuse processed for each of the 5 days and finally a weighted average is calculated for the overall 5-Day period as shown in Table 4. Daily DCS data and summaries utilized in this determination are included in the appendix. One-minute data is included in electronic format along with daily average summaries.

The daily reference steam output produced is obtained similarly to the 8-hour tests by multiplying daily astested steam production with feedwater to steam enthalpy difference. Since no auxiliary fuel was used during the 5-day test period, daily reference steam produced will then equal daily reference steam produced from refuse, i.e. reference steam from auxiliary fuel is zero (0). Note that boiler continuous blowdown was calculated as feedwater flow minus steam flow. All data are averages of 1 minute DCS readings over the entire 24 hours.

			1st5Day1	1st5Day2	1st5Day3	1st5Day4	1st5Day5
		From:	9/27/15	9/28/15	9/29/15	9/30/15	10/1/15
COVANTA DURHAM / YC	DRK		0:00:00	0:00:00	0:00:00	0:00:00	0:00:00
		To:	9/28/15	9/29/15	9/30/15	10/1/15	10/2/15
HHV Calculation Sheet			0:00:00	0:00:00	0:00:00	0:00:00	0:00:00
		From:	9/27/15	9/28/15	9/29/15	9/30/15	10/1/15
		_	0:00:00	0:00:00	0:00:00	0:00:00	0:00:00
		To:	9/28/15 0:00:00	9/29/15 0:00:00	9/30/15 0:00:00	10/1/15 0:00:00	10/2/15
REFERENCE	DATA INPUTS	UNITS	0.00.00	0.00.00	0.00.00	0.00.00	0.00.00
VALUES	Refuse Processed Boiler 1	Tons	246.2	250.8	249.3	254.1	251.2
	Refuse Processed Boiler 2	Tons	250.4	245.6	236.2	259.2	248.7
	Total Operating Time - Unit 1	Hours	24.0	24.0	24.0	24.0	24.0
	Total Operating Time - Unit 2	Hours	24.0	24.0	24.0	24.0	24.0
	Boiler 1 Steam Production	klbs	1,858	1,853	1,854	1,849	1,856
	Boiler 2 Steam Production	klbs	1,846	1,857	1,854	1,855	1,851
	Boiler 1 Blowdown Flow	klbs	18.7	21.0	15.8	13.6	16.4
020. dog [Boiler 2 Blowdown Flow Boiler 1 Stm Temp	klbs	7.4 932.4	6.1 937.2	5.3 935.1	2.7 939.1	4.8 937.5
930 deg F	Boiler 2 Stm Temp	deg F deg F	932.4	938.6	935.1	939.1	936.0
1300 psig	Boiler 1 Stm Press	psig	1,282.2	1,282.0	1,282.0	1,282.2	1,282.6
1000 polg	Boiler 2 Stm Press	psig	1,282.1	1,282.3	1,282.3	1,282.4	1,282.6
275 deg F	Boiler 1 Feedwater Temperature	deg F	280.9	280.8	278.4	276.9	277.0
	Boiler 2 Feedwater Temperature	deg F	280.1	279.9	277.5	276.2	276.4
	Boiler 1 Feedwater Pressure	psig	1,470.4	1,473.1	1,469.6	1,468.5	1,471.1
	Boiler 2 Feedwater Pressure	psig	1,475.1	1,477.1	1,475.3	1,474.9	1,471.6
	Boiler 1 Drum Pressure	psig	1,399.0	1,398.1	1,398.4	1,397.5	1,398.6
330 deg F	Boiler 2 Drum Pressure Blr 1 Econ Exit Gas Temp	psig deg F	1,395.9 328.8	1,397.2 329.7	1,396.8 328.9	1,396.1 329.0	1,396.4 329.0
330 deg F	Bir 2 Econ Exit Gas Temp	deg F	332.5	335.7	331.4	333.4	329.0
200 deg F	Bir 1 Heated Comb Air Temp	deg F	166.8	166.9	216.7	161.9	245.2
	Blr 2 Heated Comb Air Temp	deg F	159.6	160.4	211.4	154.3	242.8
80 deg F	Boiler 1 Ambient Air Temp	deg F	78.0	81.7	81.4	73.6	69.4
	Boiler 2 Ambient Air Temp	deg F	79.5	82.4	81.2	72.5	67.5
	Bir 1 Econ Exit Dry O2	%	8.28	8.21	8.16	8.23	8.22
	Blr 2 Econ Exit Dry O2	%	8.87	7.77	7.40	7.55	7.50
1,000 Btu/cuft	Aux Fuel Usage - Boiler 1 Natural Gas		0.00	0.00	0.00	0.00	0.00
1,000 Btu/cuft	Aux Fuel Usage - Boiler 2 Natural Gas ENTHALPIES	s kcuft	5.51	0.00	0.00	0.00	0.00
1,455.71 Btu/lb	Main Steam	Btu/lb	1,456.80	1,459.75	1,458.45	1,460.88	1,459.87
1, 100.11 Danb	Man otean	Diano	1,455.55	1,460.53	1,458.48	1,462.40	1,458.98
247.14 Btu/lb	Feedwater	Btu/lb	252.97	252.81	250.44	248.86	248.96
			252.16	251.93	249.51	248.12	248.32
	Blowdown	Btu/lb	600.54	600.43	600.47	600.36	600.49
			600.15	600.31	600.27	600.17	600.22
54.83 %	CALCULATIONS % Excess Air from %O2	%	64.38	63.55	62.92	63.80	63.64
J4.00 /0	% Excess Air from %O2	%	72.32	58.23	54.33	55.86	55.35
	Bir 1 Steam Ht Output	MBTUH	93.45	93.48	93.55	93.58	93.86
85% Eff. on Aux Fuel	Blr 2 Steam Ht Output	MBTUH	92.66	93.61	93.45	93.87	93.45
	0.85 Ht Output due to Aux Fuel	MBTUH	-	-	-	-	-
	Ht Output due to Aux Fuel	MBTUH	0.20	-	-	-	-
	Bir 1Ht Output from Refuse Bir 2Ht Output from Refuse	MBTUH MBTUH	93.45 92.46	93.48 93.61	93.55 93.45	93.58 93.87	93.86 93.45
	Bir 2 Ri Output from Refuse Bir 1 Spec Stm Output (BTU/lb ref fire	D	4,553.99	4,473.09	4,503.36	4,419.94	4,484.53
	Bir 2 Spec Stm Output (BTU/lb ref fire		4,431.02	4,574.11	4,747.02	4,345.33	4,508.23
	Weighted Average SSO (BTU/lb)		4,492.0	4,523.1	4,621.9	4,382.3	4,496.3
	ADJUSTMENTS						
Factors	Total/Average for both Boilers						
	Wgt Avg Econ Gas Temp	deg F	330.6	332.7	330.1	331.2	329.8
0.40 % output/10 deg F	Econ Gas Temp Adjustment	BTU/lb	1.2	4.9	0.3	2.1	(0.3)
	Wgt Avg Htd Comb Air Temp Wgt Avg Ambient Air Temp	deg F deg F	163.2 78.7	163.7 82.1	214.1 81.3	158.1 73.1	244.0 68.4
-0.28 % output/10 deg F	Htd Comb Air Temp Adjustment	BTU/lb	44.7	48.6	(16.6)	42.9	(70.0)
-0.32 % output/10 deg F	Ambient Air Temp Adjustment	BTU/lb	1.8	(3.0)	(1.9)	9.7	16.6
	Wgt Avg Excess Air	%	68.4	60.9	58.7	59.8	59.5
	Excess Air Adjustment	BTU/lb	31.7	14.3	9.4	11.3	11.0
0.52 % output/10%							
Slope y-intercept	Adjusted SSO (BTU/lb ref fired)	Btu/lb	4,571.3	4,587.8	4,613.1	4,448.3	4,453.7
		Btu/lb BTU/lb BTU/lb	4,571.3 5,775	4,587.8 5,793	4,613.1 5,821	4,448.3 5,638	4,453.7 5,644



4.1.3 Comparison of Guaranteed and Actual Waste Processed

The 5 day weighted average HHV was determined to be **13,336** kJ/kg (**5,733** BTU/lb), which linearly interpolating the table in item 3 of Exhibit 2 to Appendix 19, corresponds to a guaranteed tonneage of **425.0** Tonnes per day or **2,124** Tonnes for the 5 days. Since the actual tonnes of refuse processed averaged **453.0** tonnes per day or **2,260** Tonnes total, the Throughput Capacity Guarantee was surpassed by **28.0** Tonnes per day or **136.7** Tonnes.

Each unit also processed over **1,000** Tonnes, with Units 1 & 2 processing **1,252** and **1,240** Tonnes, respectively, thereby successfully demonstrating that requirement.

			Te	st 1]
	Sunday	Monday	Tuesday	Wednesday	Thursday		
Day of Week	1	2	3	4	5		
Test Day	Day 1	Day 2	Day 3	Day 4	Day 5	Total	Wtd. Avg.
	9/27/15	9/28/15	9/29/15	9/30/15	10/1/15		
Refuse Daily HHV (BTU/lb)	5,775	5,793	5,821	5,638	5,644		5,733
Guaranteed Tons	464.8	463.3	461.0	476.2	475.7	2,341	468.4
Actual Tons Processed	496.6	496.4	485.5	513.3	499.9	2,492	499.3
Tons Above Guarantee	31.85	33.06	24.46	37.07	24.18	150.6	30.9
% Above Guarantee	6.9%	7.1%	5.3%	7.8%	5.1%	6.4%	
Refuse Daily HHV (kJ/kg)	13,433	13,476	13,541	13,115	13,129		13,336
Guararanteed Tonnes	421.7	420.3	418.3	432.0	431.6	2,124	425.0
Actual Tonnes Processed	450.6	450.3	440.5	465.7	453.5	2,260	453.0
Tonnes Above Guarantee	28.90	29.99	22.19	33.63	21.94	136.7	28.0
% Above Guarantee	6.9%	7.1%	5.3%	7.8%	5.1%	6.4%	
Unit 1 tonnes processed	246.24	250.79	249.28	254.06	251.16	1,252]
Unit 2 tonnes processed	250.40	245.57	236.23	259.24	248.74	1,240	

4.2 Residue Quality Test

Residue (bottom ash) was sampled every two hours over the 5-day test period per the test procedures to demonstrate acceptable combustion during the Throughput Capacity Test. Daily composite samples were sent for laboratory analysis of moisture per ASTM Method D-3302 and for carbon per ASTM Method D-5865 (adiabatic bomb calorimeter). The results from the lab for combustible content are in the form of dry ash HHV in BTU/lb. This HHV was divided by the HHV of combustible matter of 27,912 kJ/kg (12,000 BTU/lb) to obtain percent unburned combustible matter in the ash. Triplicate analyses were performed on each daily sample. See the table below for a summary of the lab results and the appendix for sampling data sheets and laboratory results sheets. The five (5) sample results were mathematically averaged. The average lab results were 16.7% moisture and less than 0.83% carbon in the dry ash. Since these results are well below the maximum limits of 25% moisture and 3% carbon by dry weight, correcting the percent combustible for previously removed inert materials and carbon injected for the mercury control purpose was deemed unnecessary and was not performed.

Bottom Ash Unburned Combustible Analysis

	Reported in Gross Calorific Value (BTU/Lb)										
	Re	esidue Qu	ality Test								
Date	Name	Run 1	Run 2	Run 3	Average						
9/27/2015	120HRD1	100	100	100	100						
9/28/2015 120HRD2 100 100 100 100											
9/29/2015	120HRD3	100	100	100	100						
9/30/2015	120HRD4	100	100	100	100						
10/1/2015	120HRD5	100	100	100	100						
Average					100.0						
HHV for Unburned Combustibles 12,000											
Unburned Combustible % 0.42*											
* Result is a	verage of ze	ro and mir	nimum det	ection limi	t of 0.83%						

Bottor	Bottom Ash Laboratory Moisture Content (%)										
	A	s-Receive	ed Basis								
	R	esidue Qua	ality Test								
Date	Name	Run 1	Run 2	Run 3	Average						
9/27/2015	120HRD1	17.68%	17.68%	17.65%	17.7%						
9/28/2015	120HRD2	17.80%	17.77%	17.80%	17.8%						
9/29/2015	120HRD3	16.71%	16.71%	16.67%	16.7%						
9/30/2015	120HRD4	15.75%	15.72%	15.73%	15.7%						
10/1/2015	10/1/2015 120HRD5 15.90% 15.90% 15.05% 15.6%										
Average					16.7%						

Since the unburned carbon content by dry weight and moisture content were below the maximum limits of 25% moisture and 3% unburned combustible by dry weight, as illustrated in the above tables, the Throughput Capacity Guarantee was therefore successfully demonstrated.

4.3 Residue Quantity Test

4.3.1 Measurement of Total Bottom Ash & Treated Flyash

The 5-Day Residue Quantity Test was run concurrently with the Residue Quality Test with the segregation of residue commencing at 0100 hours on September 27, 2015 and concluding at 0100 hours on October 2, 2015. A one hour offset was used to estimate the time for the test refuse to combust and travel to the ash building.

At the commencement of the test period the bottom ash was physically segregated from previously produced bottom ash in the ash house bottom ash bunkers. The flyash train was shifted to an empty surge bin at 0100 hours. Flyash produced prior to 0100 was processed, then physically segregated from test period flyash in the ash house flyash bunkers. Test period flyash was then processed and tracked in the flyash bunkers to be shipped and weighed when properly cured as required by MOE approved procedures.

The shipping of the segregated test period ash was tracked and measured at the facility scales as it was shipped to the landfill. At the end of the 5 day Ash Quantity Test period the bottom ash and flyash were segregated as above from further ash being produced.

Total Waste Processed	Tonne	2,260.5
Total Bottom Ash	Tonne	470.3
Total Treated Fly Ash	Tonne	240.2
Total Residue	Tonne	710.5

5-Day Residue Quantity Test

Covanta Durham York									
5-Day Residue Quantity Test									
Bottom Ash Quantity									
Date	Net Weight (kg)	Remarks							
9/28/2015	39,470	Shipped							
9/28/2015	34,450	Shipped							
9/29/2015	39,310	Shipped							
9/29/2015	39,000	Shipped							
9/29/2015	33,370	Shipped							
9/30/2015	35,000	Shipped							
9/30/2015	35,910	Shipped							
10/1/2015	33,130	Shipped							
10/1/2015	35,890	Shipped							
10/2/2015	37,200	Shipped							
10/2/2015	40,260	Shipped							
10/2/2015	35,040	Shipped							
10/2/2015	32,290	Shipped							
Total	470,320								
Complete	as of 10/2/2015 16	:43							

09/27/2015 00:00 - 10/01/2015 24:00

Novem	her	2015	
NUVEIII	DEI	2013	,

	5-Day Residue Quantity Test											
	Treated Fly Ash Quantity											
Date	Tare Weight (kg)	Gross Weight (kg)	Net Weight (kg)	Remarks								
10/3/2015	17,870	30,150	-12,280	Pre-test fly ash, partial load-out.								
10/3/2015	17,870	51,560	33,690	Test & pre-test fly ash quantity shipped.								
10/3/2015	17,400	51,110	33,710	Test fly ash shipped								
10/5/2015			43,570									
				9/27, 9/28 & 9/29 generated fly ash is emptied.								
10/5/2015			34,020	9/30 & 10/1 generated fly ash remained on site.								
10/8/2015			38,580	1 truck load from Bay 7.								
10/10/2015	18,220	54,610	36,390	From Bay 7								
10/10/2015	18,520	51,020	32,500	From Bay 7 Partial Shipment								
			240,180	Complete as of 10/10/2015								


Daily bottom ash and fly ash quantities shipped are summarized in the 30-Day test report while truck scale reports are included in the Appendix.

4.3.2 Adjustment/Subtraction of Materials to Treat Flyash

4.3.2.1 Cement & Pozzolan

Cement and pozzolan quantities used during the 5 Days of the Residue Quantity Test were determined via silo level readings. Level readings were logged by the plant staff each morning at 07:00. Using the level readings and the area of the silos, the changes in volume were first calculated. The changes in volume were then multiplied by the appropriate density to obtain the changes in weight. Since the silo level readings did not coincide with the test start & stop times, the average rate determined over the period was applied to the test period.

The silo areas were calculated using a cement silo diameter of 3.000M and a pozzolan silo diameter of 3.700M obtained from the below drawing.

As shown in the table below, the density used for Portland cement was 1,506 kg/m³ (94 lb/ft³) while the density of the pozzolan material of 1,346 kg/m³ (84 lb/ft³) which was obtained from the supplier, is closer regular cement.

Material	Lbs/cu.ft	Kgs/cu.m
Cement	85	1362
Cement (Portland)	94	1506
Cement (Portland) Clinker	95	1522
Cement Dust	50	801

The cement and pozzolan silo levels and change in weight are summarized in the below table. Note that the cement data is from 9/29 - 10/2 and the pozzolan data is an average rate from 9/21 through 10/2 because of a cement delivery on 9/28 and pozzolan deliveries on delivery on 9/28 and 10/2.

				94	lb/ft³						84	lb/ft³		
	7.069	m²	area	1505.8	kg/m³			10.752	m²	area	1345.6	kg/m³		
	3.0	meter	diameter					3.7	meter	diameter				
		Cer	nent						Slag/PC	DZZOLAN				
							∆tonne							∆tonn
		Meter	Volume	Received	∆m³	∆kg	/day		Meter	Volume	Received	∆m³	∆kg	/day
9/21		3.4						9/21	4.7		41536			
9/22		3.3						9/22	3.8					
9/23		2.8						9/23	3.6					
9/24		2.2						9/24	3.5					
9/25		1.9						9/25	3					
9/26		1.9						9/26	2.8					
9/27		1.9						9/27	2.6					
9/28		0.8						9/28	1.8		?	31.181	41956.2	5.994
9/29		4.27						9/29	3.9					
9/30		3.5						9/30	3.2					
10/1		2.6						10/1	2.5					
10/2		2.1		43930	15.339	23096.5	7.699	10/2	2.4		38310	16.128	21701.5	7.234
10/3		5.1						10/3	4.6					

4.3.2.2 Water

Water used in the mixing of flyash, cement and pozzolan was estimated as being 45% by weight of the sum of the pozzolan and cement weight. See the 30-Day report for supporting information of this value.

4.3.3 Net Correction for Flyash Treatment Materials

									7.699	6.614	0.45		
				Waste Processed	Waste HHV	Guarantee	Bottom Ash	Treated Wet Fly Ash	CEMENT	POZZOL AN	Estimated Water	Ash (No	Net Total Residue-to- Waste Ratio
Date Start	Date End	Durat ion	Name	Tonne	MJ/kg	%	Tonne	Tonne	tonnes	tonnes	tonnes	tonnes	%
27-Sep	1-Oct	5	5-Day Test	2,260	13.34	29.4	470.3	240.2	38.5	33.1	32.2	136.4	26.8%

After adjusting/removing the cement, pozzolan and water, the ratio of total residue to refuse is 26.8% which is below/better than the guarantee of 29.4% at an average 5-Day HHV of 13.34 MJ/kg.

Covanta-5Day-Test-Report.docx

5 DISCUSSION

5.1 Throughput Performance Test

5.1.1 Daily Refuse HHV vs 8-Hour As-Tested HHV

The daily refuse HHV varied between 13.1 and 13.5 kJ/kg (5,638 and 5,821 BTU/lb) or roughly 3% over the 5-day period. The weighted average HHV for the 5-day test period was 13.3 kJ/kg (**5,733** BTU/lb). These HHV's are somewhat less than the HHV's of the five energy recovery tests. It was observed that fresh waste on top of the pit was fed during the daytime hours and older waste lower in the pit was fed during the other hours. The average 5-Day HHV was approximately 3.1% higher than the average of the 5, 8-hours tests and 2.6% higher than the design HHV of 13 kJ/kg (5589 BTU/lb).

5.2 Residue Quality Test

5.2.1 Unburned Carbon Detection Limit

All of the daily residue samples' calorific value (HHV) were less than the laboratory detection limit (LDL) of 232.6 kJ/kg (100 BTU/lb) or 0.83% of the HHV of combustible matter of 12,000 BTU/lb. The HHV of combustible matter is preferred by ASME PTC 34 and is lower than the typical value used for carbon of 33,727 kJ/kg (14,500 BTU/lb). Furthermore, all triplicate analyses were reported less than the LDL both on dry and as-received bases. When reporting average values, the average between the LDL of 0.83 % and zero or 0.42% is used.

Prior to chemical analysis, the laboratory removed visible non-combustible material and recorded the weights of such non-combustibles. Values on the lab reports are final calculated results including such corrections.

5.2.2 Moisture Content

The moisture content of the triplicate analyses of the 5 daily residue samples varied from 15.1% to 17.8% with an overall average of 16.7%. Therefore, all daily sample averages as well as all triplicate results were below the 25% guarantee.

6 ACKNOWLEDGEMENTS

The Throughput Capacity and Residue Quality & Quantity Tests were conducted by Covanta and witnessed by the Consultant Engineers for the Durham York Regions, HDR. The participants and representatives and especially the plant staff are gratefully acknowledged for their assistance and cooperation throughout the testing program.

HDR, Inc.	John Clark Shawn Worster Gregory Gesell Donald "Mike" Singler Jeff Martirano Ryan Lichtman Kirk Dunbar
Covanta	Matt Neild Ken Coatham Jigar Vyas Jennifer Baron Amanda Huxter Stephen DeDuck Lambert Xiao Greg Rodia Andy Lang (Great Lakes) Bill Marsden (Hempstead)
Lakeland Multi-Trade	Mike Holmes Korey Glover Justin Whalen

James Forestall Derek Anderson Nick Quinten

7 <u>Tables</u>

- 7.1 Residue Quality Test
- 7.1.1 Sample Weight Data Sheets (3 sheets).

November 2015

7.1.1.1 Days 1 & 2 Ash Sampling Raw Data Sheet

	5-D	Covanta Durhai ay Bottom Ash Qua			
	Sample Number	Sample Weight (45.4 kg)		Screene +50 mm	d Weight - 50 mm
Sun In127 2:00	1	100 Lhs	1 Mar 14	2Lbs	98 Lbs
4:00	2	96 Lbs	1 1	GLAS	90 Lbs.
6:00	3	95 165	1	8165	87465
8:00	4	94 Lbs		2165	92165
10:00	5	89.1hs	- /	7165	Blibs
12:00 pm	6	95 lbs		4165	91 1hs
2:00 pm	7	94 lbs		4165	90 Lbr
\$.00 pm	8	96 165.		9165	87 Lbs.
8:00 pm	9	99 165	22	\$ 1bs	95 Lbs.
6:00 pm	10	48 165 V		2165	96 14
10:00 pm	11	94 165.		11 1bs.	83 1bs
12:00 Am	12	96 165.		12 165	84 Ibs.
		1,145 Lbs.	Sub-totals	71 lbs.	1,074 15
Set 7815 \$ 2:00 am	1	97 Lbs.		7165	90 Lbs.
4:00 am	2	93 Lbs:		9 Lbs	84 665
6:00 am	3	94 Lbs		SLbs	R6 1bs.
8:00 am	4	96 65		7165	94 165
10:00 am	5	96165		4165	92 1bs
12:00 pm	6	95 Ibs.		2165	93 1bs
2:00 pm	7	96 Ibs.		3165	93 lbs
4:00 pm	8	102 1bs		1 1.65.	101 165
6:00 pm	9	100 165		2 165	98 Ltr.
8:00 . Om	10	98 ibs.	,	9 lbs.	89 lbs.
10:00 m	11	97 Ibs.		5 1b5.	92 165.
12:00 am	12	99 INS.		2 165.	97 165
		1,163 1bs.	Sub-totals	54 165.	1,109 14

* UNUSED SAMPLE PUT INTO BAY 3 WITH TEST BOT NON. SED

D-Y Residue Sampling Data Sheets both units.xlsx 5 Day Res Samp kg

Table 4C

6/4/2014 1:22 PM

Ð

Covanta Durham-York

7.1.1.2 Days 3 &4 Ash Sampling Raw Data Sheet

		5-Da	y Bottom Ash Qual	ity Sampling		
Date	Time (2 hr. intervals)	Sample Number	Sample Weight (45.4 kg)		Screene +50 mm	d Weight - 50 mm
sept 21/1		1	901bs		0	90 165.
	4:00 am	2	91 165.		314	98 lbs.
	6:00 and	3	93 ibs		3. 1bs	90 1hr.
1	8:00 am	4	99 1bs.		2 165.	97 1bs.
	10:00 am	5	95 Ibs		2 1bs	93 lbs.
-	12:00 pm	6	93 165.		5 lbs.	88 165.
	2:00 pm	7	97 1bs.		3 165	94 165
	4:00 pm	8	95 165.		3 165.	92 165
	6:00 pm	9	100 165.		2 165	98 1bs
	8:00 pm	10	- 92 1bs.		1:3 160	79 165
	10:00 pm	11	95 lbs.		1 1bs.	94 165.
-	12:00 ann.	12	105 15.		15 lbs.	90 165.
			1,145 165.	Sub-totals 5	2 7 155.	1.093 lbr.
Sept 30	2:00 mm	1	1,145 165. 95 1ks	Sub-totals 5	2 7 165. 3 160	1,093 lbr. 97 lbs
Sept 30	2:00 cm	1 2		Sub-totals 5		97 165
Sept 30	11 11 12		95 lbs	Sub-totals 5	3 160	97 165 86165
<u>Sept 30</u> -	4:00 am	2 3	95 lk 94 lbs	Sub-totals 5	3 1bs	97 165
<u>Sept 30</u>	4:00 am	2 3	95 lbs 95 lbs	Sub-totals 5	3 160 8 163 11 165	97 165 86165 84165 101165
<u>Sept 30</u> - -	4:00 am 6:00 am 8:00 cm	2 3 4	95 1ks 94 1bs 95 1ks 10071bs	Sub-totals 5	3 160 8 163 11 165	97 165 86165 84165
<u>Sept 30</u> - - -	4:00 am 6:00 am 8:00 am	2 3 4 5	95 1ks 94 1bs 95 1ks 10071bs 961bs	Sub-totals 5	3 160 8 160 11 165 6 65	97 165 86165 84165 101165 95165
<u>Sept 30</u> - - -	4:00 am 6:00 am 8:00 am 10:00 am 10:00 am	2 3 4 5 6	95 1ks 94 1bs 95 1ks 10071bs 961bs	Sub-totals 5	3 160 8 165 11 165 6 165 1 165 7 165 7 165 2 165	97 165 86165 84165 101165 95165 941165
<u>Sept 30</u> - - -	4:00 am 6:00 am 8:00 am 10:00 am 10:00 am 12:00 am	2 3 4 5 6 7	95 11x 94 11bs 95 11bs 100711bs 100711bs 9611bs 9611bs 97 11bs	Sub-totals 5	3 162 8 163 11 165 6 165 1 165 7 162 0 165	97 165 86165 84165 101165 95165 95165 941165 92 165 88 165
<u>Sept 30</u> - - - -	4:00 am 6:00 am 8:00 cm 10:00 am 12:00 am 12:00 pm	2 3 4 5 6 7 8	95 1ks 94 1bs 95 1ks 10071bs 95 961bs 961bs 90 1bs	Sub-totals 5	3 162 8 163 11 165 6 165 1 165 7 162 7 162 0 165 2 165	97 165 86165 84165 101165 95165 94165 92 165 92 165 88 165 86 165
<u>Sept 30</u> - - -	4:00 am 6:00 am 8:00 cm 10:00 am 12:00 am 12:00 pm	2 3 4 5 6 7 8 9	95 11x 94 165 95 1165 1007165 1007165 46165 95 165 90 165 889 165	Sub-totals 5	3 162 8 163 11 165 6 165 1 165 7 165 7 165 2 165 3 165	97 165 86165 84165 101165 95165 95165 941165 92 165 88 165 86165 93 165
<u>Sept 30</u> - - - - -	4:00 am 6:00 am 8:00 cm 10:00 am 12:00 am 12:00 pm	2 3 4 5 6 7 8 9 10	95 1/4 94 1/65 95 1/65 10071/65 461/65 95 461/65 90 1/65 90 1/65 989 1/65 98 100 92	Sub-totals 5	3 160 8 165 11 165 6 165 1 165 7 165 7 165 2 165 3 165 5 165	97 165 86165 84165 101165 95165 94165 91165 92 165 86 165 93 165
<u>Sept 30</u> - - - - - - -	4:00 am 6:00 am 8:00 cm 10:00 am 12:00 am 12:00 pm	2 3 4 5 6 7 8 9 10 11	95 11x 94 165 95 1165 1007165 46165 95 165 90165 90165 989165 989165 989165	Sub-totals 5	3 162 8 163 11 165 6 165 1 165 7 165 7 165 2 165 3 165 5 165 4 165	97 165 86165 84165 101165 95165 95165 941165 92 165 88 165 86165 93 165

49 Ibs

D-Y Residue Sampling Data Sheets both units.xlsx 5 Day Res Samp kg

Table 4C

7.1.1.3 Day 5 Ash Sampling Raw Data Sheet

Date	Time (2 hr. intervals)	Sample Number	Sample Weight (45.4 kg)	Screened Weight +50 mm - 50 mm
oct 1/15	2:00 -1		94 lbs.	5 lbs 89 lbs
CC: que	4:00 am	2	93 165	2 lbs. 91 lbs.
	6:00 am		92 lbs	7 1bs. 85 1bs.
-	8:00 am	4	92165	3 1bs. 89 1bs.
	10:00 cm	5	93 16	2 165 91 165.
-	12:00 pm	6	93 lbs	Z 165 91 165
-	1	7	94165	2 165 92 165
-	4:00 pm	8	96165	511 01 120
-	1100			1.00
-	0.00	9		
-	10 000	10	<u>-101 lbs</u> 99 lbs	
	10:00 pm	11		<u> </u>
÷	12:00 pm	12	103 105 1,154 165 Sub-totals	1 105.
I			1, 154 165 Sub-totals	14 D, \$ 70 105
		1		
-		2		
-		3		
-		3 4		
-				
-		4		
-		4 5		
-		4 5 6		
-		4 5 6 7		
-		4 5 7 8		
-		4 5 7 8 9 10		
-		4 5 7 8 9 10 11		
-		4 5 7 8 9 10		

Covanta Durham-York 5-Day Bottom Ash Quality Sampling

D-Y Residue Sampling Data Sheets both units.xlsx 5 Day Res Samp kg

Table 4C

7.1.2 SGS Unburned Combustible & Moisture Lab Results Three (3) sheets per day. (15 sheets total).

7.1.2.1	Day 1 Ash Lab Result Run 1		
SGS	Ana	lysis Report	
October 13, 2015	I		
COVANTA ENERGY 445 SOUTH STREET MORRISTOWN NJ			Page 1 of 1
ATTN: STEVE DEDU	JCK		
Client Sample ID: Date Sampled: Date Received: Product Description:	120 H.R. D.1 Run 1 Sep 27, 2015 Sep 29, 2015 ASH	Sample ID By: Sample Taken At: Sample Taken By: Sample ID:	Covanta Submitted Submitted Covanta DYEC 120 H.R. D.1
	SGS Minerals Sample ID:	491-1588227-004	
Moisture, Total % Sulfur % Gross Calorific Value	Method ASTM D3302 ASTM D4239 (A) Btu/lb ASTM D5865	<u>As Received</u> 17.68 0.72	<u>Dry</u> 0.87 <100

Varence Clarkingo

Vanessa Chambliss Branch Manager

Minerals Services Division SGS North America Inc. 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any instructional advisories of holdhollow contained that contained to its linear to a transaction the transaction documents. Any instructional advisories of holdhollow contained that contained to its linear to a transaction of the contained to its linear to a transaction of the contained to advisories of holdhollow contained to advisories of the contained to advisories of the

Member of the SGS Group (Société Générale de Surveilland

7.1.2.2	Day 1 Ash Lab	Result Run 2			
SGS		Ana	lysis Report		
October 13, 2015	I				
COVANTA ENERGY 445 SOUTH STREET MORRISTOWN NJ	г — — — — — — — — — — — — — — — — — — —				Page 1 of 1
ATTN: STEVE DED	иск				
Client Sample ID:	120 H.R. D.1	Run 2	Sample ID By:	Covanta	
Date Sampled:	Sep 27, 2015		Sample Taken At:	Submitted	
Date Received:	Sep 29, 2015		Sample Taken By:	Submitted	
Product Description:	ASH		Sample ID:	Covanta DYEC 12	20 H.R. D.1
	SGS	Minerals Sample ID:	491-1588227-005		
Moisture, Total %		Method ASTM D3302	As Received 17.68	Dry	
Sulfur %		ASTM D4239 (A)	0.69	0.84	
Gross Calorific Value	Btu/lb	ASTM D5865		<100	

Varia Clarkinos

Vanessa Chambliss Branch Manager

SGS North America Inc. Minerals Services Division SGS North America Inc. 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals

Member of the SGS Group (Société Générale de Surveillant

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein.

7.1.2.3	Day 1 Ash Lab Result Run 3		
SGS	A1	nalysis Report	
October 13, 2015			
COVANTA ENERGY V 445 SOUTH STREET MORRISTOWN NJ (ATTN: STEVE DEDU	07960		Page 1 of 1
Client Sample ID: Date Sampled: Date Received: Product Description:	120 H.R. D.1 Run 3 Sep 27, 2015 Sep 29, 2015 ASH	Sample ID By: Sample Taken At: Sample Taken By: Sample ID:	Covanta Submitted Submitted Covanta DYEC 120 H.R. D.1
	SGS Minerals Sample II): 491-1588227-006	
Moisture, Total %	<u>Method</u> ASTM D3302 ASTM D4239 (A)	<u>As Received</u> 17.65 0.70	<u>Dry</u> 0.85

Varence Clarkingo

Vanessa Chambliss Branch Manager

SGS North America Inc. Minerals Services Division 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals

Member of the SGS Group (Société Générale de Surveillan

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined merein.

Page 1 of 1

7.1.2.4 Day 2 Ash Lab Result Run 1 Analysis Report October 14, 2015 COVANTA ENERGY WBH LLC 445 SOUTH STREET MORRISTOWN NJ 07960 ATTN: STEVE DEDUCK Sample ID By: Client Sample ID: 120 H.R. D.2 Run 1 Covanta Date Sampled: Sep 28, 2015 Date Received: Sep 30, 2015 Sample Taken At: Submitted Sample Taken By: Submitted Product Description: ASH Sample ID: Covanta DYEC 120 H.R. D.2

 SGS Minerals Sample ID: 491-1588248-004

 Moisture, Total %
 ASTM D3302
 17.80

 Sulfur %
 ASTM D4239 (A)
 0.68
 0.83

 Gross Calorific Value Btu/lb
 ASTM D5865
 <100</td>

Varena Clankino

Vanessa Chambliss Branch Manager

SGS North America Inc. 16130 Van Drunen Road 3

16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals Member of the SGS Group (Societé Générale de Surveilland

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the ilmitation of ilability, indemnification and jurisdiction issues defined therein.

7.1.2.5	Day 2 Ash Lab	Result Run 2		
SGS		Anal	ysis Report	
October 14, 2015				
COVANTA ENERGY 445 SOUTH STREET MORRISTOWN NJ				Page 1 of
ATTN: STEVE DED	UCK			
Client Sample ID:	120 H.R. D.2	Run 2	Sample ID By:	Covanta
Date Sampled:	Sep 28, 2015		Sample Taken At:	Submitted
Date Received:	Sep 30, 2015		Sample Taken By:	Submitted
Product Description:	ASH		Sample ID:	Covanta DYEC 120 H.R. D.2
	SGS	Minerals Sample ID:	491-1588248-005	
	000			
Moisture, Total %	000	Method ASTM D3302	As Received 17.77	Dry
Moisture, Total % Sulfur %		Method		<u>Dry</u> 0.78

Varence Clarking

Vanessa Chambliss Branch Manager

Minerals Services Division SGS North America Inc. 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals

Member of the SGS Group (Société Générale de Surveillanc

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of ilability, indemnification and jutraticion issues defined therein.

7.1.2.6	Day 2 Ash Lab Result Ru	in 3		
SGS		Analysis Report		
October 14, 2015	1			
COVANTA ENERGY 445 SOUTH STREET MORRISTOWN NJ				Page 1 of 1
ATTN: STEVE DEDU	ЈСК			
Client Sample ID: Date Sampled: Date Received: Product Description:	120 H.R. D.2 Run 3 Sep 28, 2015 Sep 30, 2015 ASH	Sample ID By: Sample Taken At: Sample Taken By: Sample ID:	Covanta Submitted Submitted Covanta DYEC	2120 H.R. D.2
	SGS Minerals Sa	mple ID: 491-1588248-006		
Moisture, Total %	<u>Method</u> ASTM D330		Dry	
Sulfur % Gross Calorific Value	ASTM D423 Btu/lb ASTM D580		0.77 <100	

Variasa Clarkinos

Vanessa Chambliss Branch Manager

SGS North America Inc. Minerals Services Division 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals

Member of the SGS Group (Société Générale de Surveillan

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

7.1.2.7	Day 3 Ash Lab Result Run 1		
SGS		Analysis Report	
October 14, 2015			
COVANTA ENERGY V 445 SOUTH STREET MORRISTOWN NJ ATTN: STEVE DEDU	07960		Page 1 of 1
Client Sample ID: Date Sampled: Date Received: Product Description:	120 H.R. D.3 Run 1 Sep 29, 2015 Oct 1, 2015 ASH	Sample ID By: Sample Taken At: Sample Taken By: Sample ID:	Covanta Submitted Submitted Covanta DYEC 120 H.R. D.3
	SGS Minerals Samp	le ID: 491-1588274-004	
Moisture, Total % Sulfur %	<u>Method</u> ASTM D3302 ASTM D4239 (As Received 16.71 (A) 0.85	<u>Dry</u> 1.02

Varena Chartico

Vanessa Chambliss Branch Manager

Minerals Services Division SGS North America Inc. 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals

Member of the SGS Group (Société Généraie de Surveillan

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

7.1.2.8	Day 3 Ash Lab Result Run 2		
SGS	A	nalysis Report	
October 14, 2015			
COVANTA ENERGY V 445 SOUTH STREET MORRISTOWN NJ ATTN: STEVE DEDU	07960		Page 1 of 1
Client Sample ID: Date Sampled: Date Received: Product Description:	120 H.R. D.3 Run 2 Sep 29, 2015 Oct 1, 2015 ASH	Sample ID By: Sample Taken At: Sample Taken By: Sample ID:	Covanta Submitted Submitted Covanta DYEC 120 H.R. D.3
	SGS Minerals Sample I	D: 491-1588274-005	
Moisture, Total %	<u>Method</u> ASTM D3302 ASTM D4239 (A)	<u>As Received</u> 16.71 0.87	<u>Dry</u> 1.05

Varena Clarkino

Vanessa Chambliss Branch Manager

Minerals Services Division SGS North America Inc. 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals

Member of the SGS Group (Société Générale de Surveilland

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any

Day 3 Ash La	ab Result Run 3			
S	Anal	ysis Report		
EET NJ 07960				Page 1 of 1
Sep 29, 201 Oct 1, 2015	5	Sample ID By: Sample Taken At: Sample Taken By: Sample ID:	Covanta Submitted Submitted Covanta DYEC 1	20 H.R. D.3
SG	S Minerals Sample ID:	491-1588274-006		
	<u>Method</u> ASTM D3302 ASTM D4239 (A) ASTM D5865	<u>As Received</u> 16.67 0.86	<u>Dry</u> 1.03 <100	
	S GY WBH LLC EET NJ 07960 EDUCK 120 H.R. D.: Sep 29, 201 Oct 1, 2015 on: ASH	Anal GY WBH LLC EET NJ 07960 EDUCK 120 H.R. D.3 Run 3 Sep 29, 2015 Oct 1, 2015 Oct 1, 2015 Oct 1, 2015 Oct 3, 20	Analysis Report Analysis Report GY WBH LLC EET NJ 07960 EDUCK 120 H.R. D.3 Run 3 Sample ID By: Sep 29, 2015 Sample Taken At: Oct 1, 2015 Sample Taken At: Oct 1, 2015 Sample Taken By: Son: ASH Sample ID: GS Minerals Sample ID: 491-1588274-006 Method ASTM D3302 16.67 ASTM D3302 16.67 ASTM D4239 (A) 0.86	Analysis Report Analysis Report GY WBH LLC EET NJ 07960 EDUCK 120 H.R. D.3 Run 3 Sample ID By: Covanta Sep 29, 2015 Sample Taken At: Submitted Oct 1, 2015 Sample Taken By: Submitted on: ASH Sample ID: Covanta DYEC 1 SGS Minerals Sample ID: 491-1588274-006 Method ASTM D3302 16.67 ASTM D4239 (A) 0.86 1.03

Varia Clarkino

Vanessa Chambliss Branch Manager

Minerals Services Division 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals SGS North America Inc. Member of the SGS Group (Société Générale de Surveillan

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein.

7.1.2.10 Day 4 Ash Lab Result Run 1	
SGS Analysis Report	
October 14, 2015	
COVANTA ENERGY WBH LLC 445 SOUTH STREET MORRISTOWN NJ 07960	Page 1 of 1
ATTN: STEVE DEDUCK	
Client Sample ID:120 H.R. D.4 Run 1Sample ID By:CovantaDate Sampled:Sep 30, 2015Sample Taken At:SubmittedDate Received:Oct 2, 2015Sample Taken By:SubmittedProduct Description:ASHSample ID:Covanta DYEC 120 H.	R. D.4
SGS Minerals Sample ID: 491-1588306-004	
MethodAs ReceivedDryMoisture, Total %ASTM D330215.75Sulfur %ASTM D4239 (A)1.121.33Gross Calorific Value Btu/lbASTM D5865<100	

Varian Clarkerico

Vanessa Chambliss Branch Manager

Minerals Services Division

SGS North America Inc. 10130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals
Member of the SGS Group (Societé Générale de Surveillanc

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

ay 4 Ash Lab Result Run 2		
Anal	lysis Report	
3H LLC 7960 К		Page 1 of 1
120 H.R. D.4 Run 2 Sep 30, 2015 Oct 2, 2015 ASH	Sample ID By: Sample Taken At: Sample Taken By: Sample ID:	Covanta Submitted Submitted Covanta DYEC 120 H.R. D.4
SGS Minerals Sample ID:	491-1588306-005	
Method ASTM D3302 ASTM D4239 (A) tu/lb ASTM D5865	<u>As Received</u> 15.72 1.10	<u>Drv</u> 1.31 <100
	Anal BH LLC '960 K 120 H.R. D.4 Run 2 Sep 30, 2015 Oct 2, 2015 ASH SGS Minerals Sample ID: Method ASTM D3302 ASTM D4239 (A)	Analysis Report Analysis Report HLLC P960 K 120 H.R. D.4 Run 2 Sample ID By: Sep 30, 2015 Sample Taken At: Oct 2, 2015 Sample Taken By: ASH Sample ID: SGS Minerals Sample ID: 491-1588306-005 <u>Method As Received</u> ASTM D3302 15.72 ASTM D4239 (A) 1.10

Varena Claudico

Vanessa Chambliss Branch Manager

Minerals Services Division

SGS North America Inc. 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals
Member of the SGS Group (Societé Générale de Surveillan

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein.

7.1.2.12	Day 4 Ash Lab Result Run	3		
SGS		Analysis Report		
October 14, 2015				
COVANTA ENERGY W 445 SOUTH STREET MORRISTOWN NJ (ATTN: STEVE DEDU Client Sample ID: Date Sampled:)7960	Sample ID By: Sample Taken At:	Covanta Submitted	Page 1 of 1
Date Received:	Oct 2, 2015	Sample Taken By:	Submitted	
Product Description:	ASH	Sample ID:	Covanta DYEC	: 120 H.R. D.4
	SGS Minerals Sam	ple ID: 491-1588306-006		
	Method	As Received	Dry	
Moisture, Total %	ASTM D3302			
Sulfur %	ASTM D4239		1.31	
Gross Calorific Value E	3tu/lb ASTM D5865	i de la companya de l	<100	

Varia Clarkinos

Vanessa Chambliss Branch Manager

Minerals Services Division 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals SGS North America Inc. Member of the SGS Group (Société Générale de Surveillan

This document is issued by the Company under its General Conditions of Senice accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of ilability, indemnification and jurisdiction issues defined therein.

7.1.2.13	Day 5 Ash Lab Result Ru	n 1				
SGS		Analysis Report				
I October 13, 2015						
COVANTA ENERGY W 445 SOUTH STREET MORRISTOWN NJ D				Page 1 of 1		
ATTN: STEVE DEDUC	ск					
Client Sample ID: Date Sampled: Date Received: Product Description:	120 H.R. D.5 Run 1 Oct 1, 2015 Oct 5, 2015 ASH	Sample ID By: Sample Taken At Sample Taken By Sample ID:	: Submitted	'EC 120 H.R. D.5		
SGS Minerals Sample ID: 491-1588334-004						
Moisture, Total % Sulfur % Gross Calorific Value E	Method ASTM D330 ASTM D423 Btu/lb ASTM D586	39 (A) 1.43				

Yane and Clark 1:00

Vanessa Chambliss Branch Manager

Minerals Services Division

SGS North America Inc. 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals
Member of the SGS Group (Société Générale de Surveilland

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

7.1.2.14 [Day 5 Ash Lab Result Run 2			
SGS		Analysis Report		
October 13, 2015				
COVANTA ENERGY W 445 SOUTH STREET MORRISTOWN NJ (Page 1 of 1
ATTN: STEVE DEDU	ск			
Client Sample ID:	120 H.R. D.5 Run 2	Sample ID By:	Covanta	
Date Sampled:	Oct 1, 2015	Sample Taken At:	Submitted	
Date Received:	Oct 5, 2015	Sample Taken By:	Submitted	
Product Description:	ASH	Sample ID:	Covanta DYEC	120 H.R. D.5
	SGS Minerals Sampl	e ID: 491-1588334-005		
	Method	As Received	Dry	
Moisture, Total %	ASTM D3302	15.90		
Sulfur %	ASTM D4239 (A) 1.41	1.68	
Gross Calorific Value E	Btu/lb ASTM D5865		<100	

Varena Chankino

Vanessa Chambliss Branch Manager

Minerals Services Division SGS North America Inc. 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals

Member of the SGS Group (Société Générale de Surveilland

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

-

November 2015

7.1.2.15 Day 5 Ash Lab Result Run 3			
SGS	A	nalysis Report	
October 13, 2015	I		
COVANTA ENERGY WBH LLC 445 SOUTH STREET MORRISTOWN NJ 07960			
ATTN: STEVE DED	UCK		
Client Sample ID: Date Sampled: Date Received: Product Description:	120 H.R. D.5 Run 3 Oct 1, 2015 Oct 5, 2015 ASH	Sample ID By: Sample Taken At: Sample Taken By: Sample ID:	Covanta Submitted Submitted Covanta DYEC 120 H.R. D.5
SGS Minerals Sample ID: 491-1588334-006			
Moisture, Total % Sulfur % Gross Calorific Value	Method ASTM D3302 ASTM D4239 (A) Btu/lb ASTM D5865	<u>As Received</u> 15.05 1.40	<u>Drv</u> 1.65 <100

Varias Clarkingo

Vanessa Chambliss Branch Manager

SGS North America Inc. Minerals Services Division 16130 Van Drunen Road South Holland IL 60473 t (708) 331-2900 f (708) 333-3060 www.sgs.com/minerals

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forcerv or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Member of the SGS Group (Société Générale de Surveilland